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Three reasons to be excited

Oscillation physics:
We will know the mixing parameters 
better (JUNO, DUNE, Hyper-K, 
IceCube Upgrade)

Flavor measurements:
New neutrino telescopes = more  
events, better flavor measurement

Test of the oscillation framework:
We will be able to do what we want 
even if oscillations are non-unitary

Song, Li, Argüelles, MB, Vincent, JCAP 2021
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One likely TeV–PeV ν production scenario:
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Neutral current (NC)

νx + N →  νx + X

Deep inelastic neutrino-nucleon scattering

Charged current (CC)

Makes hadronic shower

Makes shower
(e.m. or hadronic) or track

νl + N →  l + X

Receives 〈y〉Eν 
Receives (1-〈y〉)Eν 

At TeV–PeV, the average inelasticity 〈y〉 = 0.25–0.30
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or

Explore all possible combinations

2020: Use χ2 profiles from 
the NuFit 5.0 global fit
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Post-2020: Build our own 
profiles using simulations 
of JUNO, DUNE, Hyper-K

An et al., J. Phys. G 2016
DUNE, 2002.03005

Huber, Lindner, Winter, Nucl. Phys. B 2002
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How knowing the mixing parameters better helps

We can compute the oscillation 
probability more precisely: 

So we can convert back and 
forth between source and Earth 
more precisely
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For a future experiment 
ε = JUNO, DUNE, Hyper-K:

We combine experiments in 
a likelihood:

Best fit from NuFit 5.0

From our simulations
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Measure θ12 better
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(δCP less important)

(θ13 effect is tiny)
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How knowing the mixing parameters better helps

Measure θ12 better

Measure θ23 better2020 ~2030

In our results:
JUNO + Hyper-K + DUNE

Marginal improvement til 2040

NuFit 5.0

+ Hyper-K

+ JUNO

+ Hyper-K
+ JUNO

Song, Li, Argüelles, MB, Vincent, JCAP 2021 14



Theoretically palatable regions: 2020 → 2030 → 2040

15Song, Li, Argüelles, MB, Vincent, JCAP 2021



Theoretically palatable regions: 2020 → 2030 → 2040
2020

Allowed regions: overlapping 
Measurement: imprecise

15Song, Li, Argüelles, MB, Vincent, JCAP 2021



Theoretically palatable regions: 2020 → 2030 → 2040
2020

Allowed regions: overlapping 
Measurement: imprecise

Not ideal

15Song, Li, Argüelles, MB, Vincent, JCAP 2021



Theoretically palatable regions: 2020 → 2030 → 2040
2020

Allowed regions: overlapping 
Measurement: imprecise

Not ideal

2030

Allowed regions: well separated 
Measurement: improving

15Song, Li, Argüelles, MB, Vincent, JCAP 2021



Theoretically palatable regions: 2020 → 2030 → 2040
2020

Allowed regions: overlapping 
Measurement: imprecise

Not ideal

2030

Allowed regions: well separated 
Measurement: improving

Nice

15Song, Li, Argüelles, MB, Vincent, JCAP 2021



Theoretically palatable regions: 2020 → 2030 → 2040
2020

Allowed regions: overlapping 
Measurement: imprecise

Not ideal

2030

Allowed regions: well separated 
Measurement: improving

Nice

2040

Allowed regions: well separated 
Measurement: precise

15Song, Li, Argüelles, MB, Vincent, JCAP 2021



Theoretically palatable regions: 2020 → 2030 → 2040
2020

Allowed regions: overlapping 
Measurement: imprecise

Not ideal

2030

Allowed regions: well separated 
Measurement: improving

Nice

2040

Allowed regions: well separated 
Measurement: precise

Success

15Song, Li, Argüelles, MB, Vincent, JCAP 2021
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New (IC 7.5 yr): First identified high-energy astrophysical ντ

ντN scatteringτ decay

Double bang: Event #1
(“Big Bird”)

Event #2
(“Double 
Double”)

Year 2012 2014

Energy 1st 
cascade 1.2 PeV 9 TeV

Energy 2nd 
cascade 0.6 PeV 80 TeV

Length 16 m 17 m

Most likely
to be a ντ 

IceCube, 2011.03561
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Measuring flavor composition: 2015–2040

10

Based on 
real data

Projections
Status today:
Measurements are 
compatible with 
standard expectations 
(but errors are large!)

Projections:
Near future (~2020):
´ 5 reduction using 8 yr 
of IC contained + thru.
Coming up (~2040):
´ 10 reduction using 
Gen2 and all ν telescopes

Song, Li, Argüelles, MB, Vincent, JCAP 2021
IceCube, PRL 2015, ApJ 2015, PRD 2019,  J. Phys. G 2021, 2011.03561



Measuring flavor composition: 2015–2040
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Song, Li, Argüelles, MB, Vincent, JCAP 2021
IceCube, PRL 2015, ApJ 2015, PRD 2019,  J. Phys. G 2021, 2011.03561
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The allowed flavor 
region in 2040 is the 

same size as the
best-fit point marker!
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Varying over all 
possible flavor 
ratios at the source
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Song, Li, Argüelles, MB, Vincent, JCAP 2021

Theory –
Mixing parameters known 
precisely: allowed flavor regions 
are almost points (already by 2030)

Measurement of flavor ratios –
Can distinguish between similar 
predictions at 99.7% C.R. (3σ) 

Can finally use the full power of 
flavor composition for astrophysics 
and neutrino physics

By 2040:

Theoretically palatable regions: 2020 vs. 2040

16



No unitarity?  No problem
The 3 ´ 3 active mixing matrix is a 
non-unitary sub-matrix of a bigger one:

Song, Li, Argüelles, MB, Vincent, JCAP 2021

Active flavors

Additional sterile flavors

The elements           for active flavors can 
be measured without assuming unitarity

Because the sub-matrix is not-unitary
(                   ), the “row sum” may be < 1

Ellis, Kelly, Li, JHEP 2020
Parke & Ross-Lonergan, PRD 2016 25



No unitarity?  No problem

Song, Li, Argüelles, MB, Vincent, JCAP 2021

Flavor ratios at Earth:

… but the probability is computed
directly using the values of the 
(instead of the mixing angles)

Same as for standard oscillations… 

26
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No unitarity?  No problem

Song, Li, Argüelles, MB, Vincent, JCAP 2021

Flavor ratios at Earth:

… but the probability is computed
directly using the values of the 
(instead of the mixing angles)

Same as for standard oscillations… 

The allowed flavor regions
are bigger, but not much bigger!

26



No unitarity?  No problem

Song, Li, Argüelles, MB, Vincent, JCAP 2021

vs.
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More than one production mechanism?

Song, Li, Argüelles, MB, Vincent, JCAP 2021

Can we detect the contribution of
multiple ν production mechanisms?

π decay:
(1/3, 2/3, 0)

μ damped:
(0, 1, 0)

n decay:
(1, 0, 0)

Propagate to Earth

Assume real value kπ = 1 (kμ = kn = 0)

By 2040, how well will we recover the real value?
[Adding spectrum information (not shown) will likely help]

31
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More than one production mechanism?

Song, Li, Argüelles, MB, Vincent, JCAP 2021

Can we detect the contribution of
multiple ν production mechanisms?

π decay:
(1/3, 2/3, 0)

μ damped:
(0, 1, 0)

n decay:
(1, 0, 0)

Propagate to Earth

Assume real value kπ = 1 (kμ = kn = 0)

By 2040, how well will we recover the real value?

We do recover the real value

k
π  and k

μ  anti-correlated

< 40% n-decay 
contribution

[Adding spectrum information (not shown) will likely help]
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Using high-energy neutrinos as magnetometers 
If sources have strong magnetic fields, charged particles cool via synchrotron:

33
MB, Tamborra, PRD 2020
See also: Winter, PRD 2013
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Using high-energy neutrinos as magnetometers 
If sources have strong magnetic fields, charged particles cool via synchrotron:

Proton cooling
Induce a high-energy cut-off 
in the emitted ν spectrum:

Pion cooling
Steepen the ν spectrum:

Muon cooling
Change flavor composition:

33
MB, Tamborra, PRD 2020
See also: Winter, PRD 2013



34
MB, Tamborra, PRD 2020
See also: Winter, PRD 2013



Muon cooling

Pion cooling
Proton cooling

34
MB, Tamborra, PRD 2020
See also: Winter, PRD 2013



Average B’ must be
< 10kG–10 MG

ν sources with 
strong B’ are likely 

not dominant

35
MB, Tamborra, PRD 2020
See also: Winter, PRD 2013



Energy dependence of the flavor composition?
Different neutrino production channels accessible at different energies – 

MB, Beacom, Winter, PRL 2015

▸ TP13: pγ model, target photons from e-e+ annihilation [Hümmer+, Astropart. Phys. 2010]

▸ Will be difficult to resolve [Kashti, Waxman, PRL 2005; Lipari, Lusignoli, Meloni, PRD 2007]

36



Energy dependence of flavor ratios – in IceCube-Gen2

IceCube-Gen2, 2008.04323

Pion decay

Muon-damped

Measured:
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Flavor composition – a few source choices



MB, Beacom, Winter PRL 2015

Flavor composition – a few source choices



Ackermann, MB, et al., Astro2020 Survey (1903.04333)
Based on: MB, Beacom, Winter PRL 2015 31
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Full parameter space
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Standard oscillations:
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Side note: Improving flavor-tagging using echoes
Late-time light (echoes) from muon decays and neutron captures can separate 
showers made by νe and ντ – 

Li, MB, Beacom, PRL 2019
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Hadronic vs. electromagnetic showers

Li, MB, Beacom, PRL 2019

For 100-TeV shower



Are neutrinos forever?
▸ In the Standard Model (νSM), neutrinos are essentially stable (τ > 1036 yr):
   ▸ One-photon decay (νi → νj + γ): τ > 1036 (mi/eV)-5 yr
   ▸ Two-photon decay (νi → νj + γ + γ): τ > 1057 (mi/eV)-9 yr
   ▸ Three-neutrino decay (νi → νj + νk + νk): τ > 1055 (mi/eV)-5 yr

▸ BSM decays may have significantly higher rates: νi → νj + φ

▸ φ: Nambu-Goldstone boson of a broken symmetry (e.g.,  Majoron)

▸ We work in a model-independent way:
   the nature of φ is unimportant if it is invisible to neutrino detectors 

» Age of Universe
   (~ 14.5 Gyr)

35



Flavor content of neutrino mass eigenstates

|Uαi|2 =|Uαi(θ12, θ23, θ13, δCP
)|2

MB, Beacom, Winter PRL 2015

Known to within 8%

Known to within 2%

Known to within 20%
(or worse)

36



Neutrinos propagate as an incoherent mix of ν1, ν2, ν3 —

w1

w2

w3

 +

 +

Varying all possible 
combinations of weights wi 

and
mixing parameters

Complete decay selects particular weights ▸
with striking consequences for flavor   



Measuring the neutrino lifetime
ν

2
, ν

3
 → ν

1

ν
1 
lightest and stable

(normal mass ordering)

(inverted mass ordering)

ν
1
, ν

2
 → ν

3

ν3 
lightest and stable

Sources

Earth

If all unstable 
neutrinos decay

fα,⊕ = |Uα1|2

fα,⊕ = |Uα3|2

(w1 ~ 1; w2, w3 ~ 0)

(w3 ~ 1; w1, w2 ~ 0)
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Measuring the neutrino lifetime
ν

2
, ν

3
 → ν

1

ν
1 
lightest and stable

(normal mass ordering)

(inverted mass ordering)

ν
1
, ν

2
 → ν

3

ν3 
lightest and stable

Sources

Earth

If all unstable 
neutrinos decay

fα,⊕ = |Uα1|2

fα,⊕ = |Uα3|2

Decay rate depends on exp[- t / (γ τi)] = exp[- (L/E) · (mi/τi)]

(w1 ~ 1; w2, w3 ~ 0)

(w3 ~ 1; w1, w2 ~ 0)
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MB, Beacom, Murase, PRD 2017
Baerwald, MB, Winter, JCAP 2012
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Pure ν1 disfavored 
at > 2σMB, Beacom, Murase, PRD 2017

Baerwald, MB, Winter, JCAP 2012
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Using unitarity to constrain new physics

▸ New mixing angles unconstrained

▸ Use unitarity (UNPUNP = 1) to bound  
  all possible flavor ratios at Earth

▸ Can be used as prior in 
   new-physics searches in IceCube

Ahlers, MB, Mu, PRD 2018
See also: Xu, He, Rodejohann, JCAP 2014

Htot = Hstd + HNP

†



How to fill out the flavor triangle?
For n = 0

(similar for n = 1)

Argüelles, Katori, Salvadó, PRL 2015

This can populate all of the triangle – 

▸ Use current atmospheric bounds on On,i:
   O0 < 10-23 GeV, O1/Λ1 < 10-27 GeV

▸ Sample the unknown new mixing angles

See also: Ahlers, MB, Mu, PRD 2018; Rasmusen et al., PRD 2017;  MB, Beacom, Winter PRL 2015;
               MB, Gago, Peña-Garay JCAP 2010;  Bazo, MB, Gago, Miranda IJMPA 2009; + many others
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(This plot for fixed Eν = 100 TeV)

New potential dominates
(0:1:0)S → (0:1:0)⊕

Standard oscillations
(0:1:0)S → (0.25:0.37:0.38)⊕

We can disfavor all values
of m’ and g’ that lead to

these flavor ratios

MB & Agarwalla, PRL 2019



MB &Agarwalla, PRL 2019
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