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CP Violation Sensitivity

DUNE Sensitivity (Staged) S, = -2

All Systematics 50% of 5., values

B 75% of b, values
No:mal Ordering —— Nominal ;\'nalysis
sin“20,, = 0.088 £ 0.003 s B4 UNCONSIrained

sin®9,, = 0.580 unconstrained

5.5 The Near Detector Simulation and Reconstruction

Oscillation parameters are determined by comparing observed charged-current event spectra at the
F'D to predictions that are, a priori, subject to uncertainties on the neutrino flux and cross sections
at the level of tens of percent as described in the preceding sections. To achieve the required few
percent precision of DUNE, it is necessary to constrain these uncertainties with a highly capable
ND suite. The ND is described in more detail in Volume I, Introduction to DUNE.
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THREE INPUTS FOR CROSS SECTIONS

» Nucleon level inputs. Form factors etc. Flavour blind

» Nuclear response (including FSI). h

Flavour blind

Flavour
» Radiative corrections. depdendent
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FIG. 1: Schematic representation of charged current eastic
event. Photons that are within an angle A@# of the charged
lepton, or that have energy below AFE, are included in the
cross section.




RADIATIVE CORRECTIONS FOR CEVNS

BASED ON ARXIV:2011.05960
OLEKSANDR TOMALAK, PEDRO MACHADO & VISHVAS PANDEY

RELATED WORKFOR ve™ —»ve™

ARXIV:1911.01493 & ARXIV:1911.01493

I(_)III_LELKSANDR TOMALAK & RICHARD J.
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Same dominant error as In
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(b) SNS neutrino timing distribution.



COULOMB CORRECTIONS FOR CHARGED CURRENTS

BASED ON ONGOING WORK WITH
OLEKSANDR TOMALAK & RICHARD J. HILL
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“MODIFIED™ EFFECTIVE MOMENTUM APPROXIMATION



arXiv:nucl-th/9711045

PHYSICAL REVIEW C VOLUME 57, NUMBER 4 APRIL 1998

Approximate treatment of lepton distortion in charged-current neutrino scattering from nuclei

Jonathan Engel
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255

(Received 18 November 1997)

The partial-wave expansion used to treat the distortion of scattered electrons by the nuclear Coulomb field
i1s simpler and considerably less time-consuming when applied to the production of muons and electrons by
low- and intermediate-energy neutrinos. For angle-integrated cross sections, however, a modification of the
“‘effective-momentum’’ approximation seems to work so well that for muons the full distorted-wave treatment
is usually unnecessary, even at kinetic energies as low as 1 MeV and in nuclei as heavy as lead. The method
does not work as well for electron production at low energies, but there a Fermi function often proves perfectly
adequate. Scattering of electron neutrinos from muon decay on iodine and of atmospheric neutrinos on iron is
discussed in light of these results. [S0556-2813(98)04804-3 ]

PACS number(s): 25.30.Pt, 11.80.Fv


https://arxiv.org/abs/nucl-th/9711045

arXiv:nucl-th/9711045
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SYSTEMATIC DERIVATION WITH CORRECTIONS
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EIKONAL APPROXIMATION — DIRAC EQUATION
it ik iy®
%]({i)(x) —— elkxelj( (x) uﬂ( k)

Solve Dirac equation with Coulomb field iteratively
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EIKONAL APPROXIMATION — DIRAC EQUATION

1 (? ]
;(O<+>=——[ dz V(z,b) (for -k =1)
v — QOO

Solve Dirac equation with Coulomb field iteratively
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COMPUTING MATRIX ELEMENTS

With wavefunctions we compute matrix elements

1k’ x —
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COMPUTING MATRIX ELEMENTS

With wavefunctions we compute matrix elements
4 N\ - j
[d x (fII,x) 1) dpy,P e

— Jd4x VARACNT) e ﬁk,yﬂPLukeiQx

Spoils momentum conservation, lepton can “straggle” oft
Coulomb potential



POWER COUNTING — MATRIX ELEMENTS
M~ Jd3x e' QX () (A’] J,(x) | A)LF

We need a scheme by which to reliably estimate the size
of different terms from wavefunction to matrix element.

x ~0(/Q0) ~ O(1/E)



POWER COUNTING — MATRIX ELEMENTS
M~ Jd3x e' QX () (A’] J,(x) | A)LF

Note rapidly oscillating integrand

X ~ 0O(1/0)

Powers of x are power suppressed

Justifies series expansion of Eikonal phase



EIKONAL APPROXIMATION — T0 0(1/E2) — TAYLOR EXPAND

1 1
() — ,(F) 4 — (F) 54— (F)

Work to 2nd order in Work to 1st order in Work to zeroth order in
Taylor expansion Taylor expansion Taylor expansion

Note imaginary parts contribute at one lower order in 1/E.
Imaginary part at zero changes amplitude, real part is irrelevant phase.



TOY NUCLEAR MODEL



ANTI-NEUTRINO + BOUND PROTON — ANTI-LETPTON + FREE NEUTRON
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ANTI-NEUTRINO + BOUND PROTON — ANTI-LETPTON + FREE NEUTRON

| | |
Hierarchy — < ry, S — O(p) ~ exp[—rjpz]

EI/ O,



ANTI-NEUTRINO + BOUND PROTON — ANTI-LETPTON + FREE NEUTRON

| | |
Hierarchy — < ry, S — DO(p) ~ exp[—lﬁpz]

EI/ O,

do ~ dopy /. k, = kT /. 6@(P)) — e il

Transverse Momentum Fluctuations



ANTI-NEUTRINO + BOUND PROTON — ANTI-LETPTON + FREE NEUTRON

| | |
Hierarchy — < ry, S — O(p) ~ exp[—rjpz]

EI/ GJ_
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In general this factor has nuclear model-dependence
Work ongoing to understand general case
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WORK ONGOING



NEUTRINOS NUCLEI & QED

SUMMARY & QUTLOOK

» Engel’'s mEMA can be systematically
derived.

. = 1hanRk «#
o v -

» Sub-leading corrections are
analytically calculable.

ouly

» Effects include overall shift of » Asymmetry between neutrino- and
wavefunction nomalization, and anti-neutrino.

transverse momentum fluctuations.



