

1. MOTIVATION

DUNE has substantial matter effect because of 1300 km baseline. In this work, we explore :

- capability of DUNE in establishing matter effect by excluding vacuum hypothesis
- precision in the measurement of lineaveraged constant Earth matter density $(\rho_{\rm avg})$
- new degeneracies in $(\rho_{avg} \delta_{CP})$ and $(\rho_{avg} \delta_{CP})$ θ_{23}) planes

To lift these degeneracies, data from the upcoming T2HK (JD) and T2HKK (KD) are incorporated.

2. MATTER vs. VACUUM

- $\Delta P \approx [P_{\nu_{\mu} \to \nu_{e}}^{\text{mat}} P_{\nu_{\mu} \to \nu_{e}}^{\text{vac}}]$ leading term
- Expanding $(1-\hat{A})^{-2}$ and considering terms upto second order in \hat{A} :

$$\Delta P = \frac{1}{2} \sin^2 \theta_{23} \sin^2 2\theta_{13} \left[(3\hat{A}^2 + 2\hat{A} - 1) + \cos[(2n+1)\pi\hat{A}](3\hat{A}^2 + 2\hat{A} + 1) \right],$$

$$\hat{A} = \left(\frac{0.76 \times 10^{-4} (\text{eV}^2)}{\Delta m_{31}^2}\right) \times \left(\frac{\rho_{\text{avg}}}{\text{g/cm}^3}\right) \times \left(\frac{\text{E}}{\text{GeV}}\right)$$

 $P_{\mu e}$ (matter) - $P_{\mu e}$ (vacuum)

0.05 $\delta_{CP} = -90^{\circ}$ 0.04 3.5 0.03 3 0.02 **S** 2.5 •DUNE $\overline{\mathbb{Q}}$ 0.01 2 Euergy 1.5 NOvA -0.01 -0.02 -0.03 •T2K/JD 0.5 1500 Baseline [km]

 ΔP as a function of baseline and neutrino energy [?]. Solid circle (triangle) shows ΔP at first (second) oscillation maxima.

EXPLORING EARTH'S MATTER EFFECT IN HIGH - PRECISION LONG - BASELINE EPERIMENTS Masoom Singh^{1,2}, Sanjib Kumar Agarwalla^{1,3,4}

IOP, Bhubaneswar, India, ² Utkal University, Bhubaneswar, India ³ HBNI, Mumbai, India ⁴ ICTP, Trieste, Italy **EPS-HEP 2021 Workshop**

3. OUR FINDINGS

in DUNE (blue), DUNE+JD+KD(red).

T2HKK helps in incredibly reducing the degenracies in both the planes.

- DUNE.

5.]	R	E	F
[1]	N a (2	Ла teo 202	asc d 21)).
[2]	N 2	И. 01	Ма 6.	al
[3]	k	C ./	Ab	e
6.	A		Cŀ	<
		D) S]	Γ/
		S.	Aľ	M
		Р	ro	f.
		u	50	11

European Physical Society Conference on High Energy Physics 26-30 July, 2021

masoom@iopb.res.in

4. Key Takeaways

• Irrespective of the values of oscillation parameters, DUNE establishes Earth's matter at more than 2σ C.L.

• Combined data from DUNE and T2HKK enhances this measure to more than 5σ C.L. no matter what the choices of mass ordering, $\delta_{\rm CP}$, and θ_{23} .

• If in Nature, $\delta_{CP}^{true} = -90^{\circ}/90^{\circ}$, **DUNE + T2HKK followed by DUNE out**performs Super-K, solar+KamLAND and other long-baseline (T2K and NOvA) experiments in measuring ρ_{avg}

• Understanding the degeneracies in $(\rho_{avg} - \delta_{CP})$ and $(\rho_{avg} - \theta_{23})$ planes are crucial to correctly assess the outcome of

 Complementarity between DUNE and T2HKK data significantly minimizes dependency of ρ_{avg} on the uncertainties of $\delta_{\rm CP}$ and θ_{23} .

ERENCES

om Singh *et al.* Matter effect and associlegeneracies in DUNE. IP/BBSR/2021-1

ltoni and A.Yu.Smirnov. EPJ., A52(4):87,

et al. Phys.Rev., D97(7):072001, 2018

NOWLEDGEMENT

/INSPIRE Fellowship/2018/IF180059.

IKHYA HPC at IOP, Bhubaneswar.

S.Mahapatra from Utkal University for ul discussions.