

Motivations

Recent phenomenological advances in accelerator searches for "hidden sector" dark matter (DM) models arise from the realization that the existence of *sub-GeV* thermal relic DM requires a new force [3]. The benchmark model envisions LDM to be charged under a new U(1)' gauge boson (the vector mediator. dark/heavy photon, A') that kinetically mixes with standard model photons [1].

Searching for Dark Matter

Fig. 1: A visualization for the range of allowable dark matter.

The Light Dark Matter eXperiment (LDMX) is a planned electronbeam fixed-target missing-momentum experiment that has unique sensitivity to light DM in the sub-GeV range. The production process in electron fixed-target experiments is closely analogous to Bremsstrahlung, where instead of a typical photon emitted by the deceleration of the electron, a heavy or "dark" photon is emitted, hence "dark bremsstrahlung."

Fig. 2: Two possible invisible primary decay modes as a consequence of kinetic mixing. Left: Direct DM production. Right: Mediator particle, or heavy photon, production via "Dark Bremsstrahlung."

Missing Momentum Search

A silicon tagging tracker, housed in a **1.5T dipole magnet**, tags incoming electrons from the high rate SLAC LCLS-II 4 GeV Electron Beam incident on a tungsten target. A silicon recoil tracker and electromagnetic calorimeter (ECAL) selects electrons with approximate $E_{e^-} < \frac{E_{beam}}{A}$. A hadronic calorimeter (HCAL) is further downstream and vetos events on other particles that could have carried away momentum from the production reaction. A trigger scintillator subsystem counts the number of incoming electrons and significantly reduces typical beam particle arrival rate.

The LDM signature would have sufficiently large transverse mo**mentum** as dictated by the mediator mass. The trackers would be able to resolve this and reconstruct the mass of a mediator for potential signals.

THE LIGHT DARK MATTER EXPERIMENT, LDMX

Emrys Peets on behalf of the LDMX Collaboration Stanford University, SLAC National Accelerator Laboratory

Subsystems of the Experiment

Physics Reach Estimates

Fig. 4: Left: Projected full luminosity LDMX sensitivity where the experiment is able to probe three orders of magnitude lower than existing searches. Top Right: Here DM is assumed to have a mass of 60 MeV and LDMX explores both Majorana and Pseudo-Dirac DM. Bottom **Right:** LDMX sensitivity to various ratios of near-resonance Majorana DM as calculated in [3].

References

[1] T. Akesson, A. Berlin, and N. Blinov. "Light Dark Matter eXperiment (LDMX)". In: arXiv (Aug. 2018). [2] Torsten Åkesson et al. A High Efficiency Photon Veto for the Light Dark Matter eXperiment. 2019. arXiv: 1912. 05535 [physics.ins-det].

[3] Asher Berlin et al. "Dark matter, millicharges, axion and scalar particles, gauge bosons, and other new physics with LDMX". In: *Physical Review D* 99.7 (Apr. 2019). ISSN: 2470-0029. DOI: 10.1103/physrevd.99.075001. URL: http://dx.doi.org/10.1103/PhysRevD.99.075001.

Fig. 5: **Top Left:** Simple LDMX illustration representing direct LDM production. **Bottom Left:** Background illustration of hard Bremsstrahlung process in target and photonuclear reaction in calorimeter. Right: Primary background modes and rates. Veto handles describe which subsystem detects and rejects corresponding background process. [2]

Fig. 6: Distribution of ECAL Boosted Decision Tree (BDT) Discriminator value vs maximum number of photoelectrons in HCAL module. The black points represents a 2.1×10^{14} EoT background. The heat map represents a 100 MeV A' signal sample. The signal region is defined by a BDT score of < 0.99 and PE # < 5. Background events in this region are rejected by track requirements of recoil tracker and ECAL [2].

Acknowledgements

This presentation was supported by the Dark Sectors group at SLAC National Accelerator Laboratory under the guidance of Dr. Timothy Knight Nelson.

Primary Background Processes

Event Selection