Dark Matter in the Type Ib Seesaw Model Southamp

M. Chianese, <u>B. Fu</u>, and S. F. King, <u>JHEP05(2021)129</u>

Neutrino Portal

- General neutrino portal: a dark scalar, a dark fermion and a heavy neutrino $y_i\phi\overline{\chi}N_i$
- heavy scalar scenario: dark scalar is heaviest and can decay
- Dark matter producing process

 ν -Yukawa process $\propto Y^2y^2$

dark sector process $\propto y^4$

To have a connection between neutrino physics and dark matter, we are more interested in neutrino-Yukawa processes

Why Type Ib Seesaw Model?

Traditional type I seesaw mechanism (type Ia)

- To have a GeV scale heavy neutrino, the seesaw Yukawa coupling has to be roughly of order Y~10⁻⁷
- In the case of two RH neutrinos, the seesaw coupling would be too small to play a role in DM production if • M_N is below 4 TeV

Type Ib seesaw mechanism

- In type Ib seesaw model, the neutrino mass is generated by 2 different Higgs doublets, and there are 2 Yukawa couplings Y₁ and Y₂
- One of Y₁, Y₂ can be small while the other one is large which can play a role in DM production

Required Portal Coupling

- If $m_{\phi} >> m_{\chi}$, MN, the dark matter production only depends on m_{φ}/m_{χ} instead of $m\varphi$ or $m\chi$
- dark sector dominance

$$y^4 \simeq 3.9 \times 10^{-23} \frac{m_\phi}{m_\chi}$$

v-Yukawa dominance

$$(Y_1^2 + Y_2^2)^2 \simeq 5.5 \times 10^{-22} \frac{m_\phi}{m_\chi}$$

- For heavy MN, the v-Yukawa dominance is favoured in most of the parameter space as there is a lower bound on m_{ϕ}/m_{χ} for v-
- Yukawa dominance

$$\frac{m_{\phi}}{m_{\chi}} \gtrsim 6.9 \times 10^{-9} \left(\frac{M_N}{1 \text{GeV}}\right)^2 \frac{1}{\sin^2 2\beta}$$

The Model

- Particles and symmetries:
- ► The Z₃ symmetry ensures the SM fermion mass is generated through type II 2HDM
- ► the Z₂ symmetry ensures the dark fermion stable

	Q_{α}	$u_{R\beta}$	$d_{R\beta}$	L_{α}	$e_{R\beta}$	Φ_1	Φ_2	$N_{ m R1}$	$N_{ m R2}$	ϕ	$\chi_{L,R}$
$SU(2)_L$	2	1	1	2	1	2	2	1	1	1	1
$U(1)_Y$	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	$-\frac{1}{2}$	$-\frac{1}{2}$	0	0	0	0
Z_3	1	\Im	ω	1	ω	\mathcal{S}	ω^2	ω^2	3	ω	ω^2
Z_2	+	+	+	+	+	+	+	+	+	_	_

Seesaw Lagrangian and neutrino portal

$$\mathcal{L}_{\text{seesawIb}} = -Y_{1\alpha}\overline{L}_{\alpha}\Phi_{1}N_{R1} - Y_{2\alpha}\overline{L}_{\alpha}\Phi_{2}N_{R2} - M_{N}\overline{N_{R1}^{c}}N_{R2} + \text{h.c.}$$

$$\mathcal{L}_{\text{N_R portal}} = y_{1}\phi\,\overline{\chi_{R}}N_{R1}^{c} + y_{2}\phi\,\overline{\chi_{L}}N_{R2} + \text{h.c.}$$

The two RH neutrinos form a Dirac pair $\mathcal{N} = (N_{R1}^c, N_{R2})$

Relation to Experiments

- tanβ is defined as the ratio of two VEVs in the 2HDM
- v-Yukawa dominance is allowed above the coloured dashed lines for the corresponding conditions
- The sensitivity of future experiment SHiP and FCC-ee are marked out by red and orange lines
- U² is the strength of active-sterile neutrino mixing which takes the expression

$$U_{\alpha}^{2} = (a_{\alpha} + b_{\alpha}\cos\delta_{M})\frac{v_{1}^{2}Y_{1}^{2}}{M_{N}^{2}} + (a_{\alpha} - b_{\alpha}\cos\delta_{M})\frac{v_{2}^{2}Y_{2}^{2}}{M_{N}^{2}}$$

The strongest constraint is given by v_{μ} mixing

• When the value of tanβ increases, the dashed coloured line moves downwards, which means the parameter space is less constrained

• When the value of the mass ratio m_{ϕ}/m_{χ} increases, the line moves upwards and the parameter space is more constrained