Higgs Invisible & Rare Decays at ILC

Chris Potter

(on behalf of the ILC IDT WG on Physics and Detectors)

University of Oregon

The ILC International Development Team (IDT)

https://linearcollider.org/team/

The ILC Higgs Factory: ILC TDR Volumes 1-4

The operation of an e^+e^- collider at a CM energy of 250 GeV will yield a large sample of Higgs bosons that are tagged by recoil against an observed Z boson at a fixed laboratory energy.

By selecting these Z bosons and looking on the other side of the event, e^+e^- colliders will be sensitive to essentially all possible rare and exotic Higgs boson decay channels...

EPS-HEP2021, 27 July 2021 - p.3/17

Higgs Boson Production at the ILC

At left, cross sections vs \sqrt{s} for the three Higgs boson production modes. At right, the recoil mass distribution in simulation at $\sqrt{s}=250$ GeV with L=250 fb $^{-1}$ assuming 80% lefthanded e^- and 30% righthanded e^+ . This yields a *decay-independant* sample of Higgs bosons.

Rare Higgs Boson Decay in the Standard Model (SM)

Particle Data Group: Higgs Boson

Current LHC and HL-LHC Expectations: $H \rightarrow \text{invisible}$

ATLAS upper limit on BR($H \rightarrow \text{inv.}$) is 11%, CMS expectation for the HL-LHC is 3-4%.

Current LHC and HL-LHC Expectations: $H o \mu^+ \mu^-$

Table 27: Expected precision on the signal strength measurement in the $H \to \mu^+ \mu^-$ channels with 3000 fb⁻¹ of HL-LHC data with the two systematic uncertainties scenarios. For the HL-LHC extrapolation, the improved ITk resolution has been emulated.

			_
Experiment	ATLAS		•
Process	Comb	ination	-
Scenario	S 1	S2	
Total uncertainty	$^{+15\%}_{-14\%}$	$^{+13\%}_{-13\%}$	
Statistical uncert.	$^{+12\%}_{-13\%}$	$^{+12\%}_{-13\%}$	-
Experimental uncert.	$^{+3\%}_{-3\%}$	$^{+2\%}_{-2\%}$	
Theory uncer.	+8% -5%	$^{+5\%}_{-4\%}$	
Experiment	CI	MS	
Process	Comb	ination	
Scenario	S1	S 2	
Total uncertainty	13%	10%	CERN-LPCC
Statistical uncert.	9%	9%	-2018-04
Experimental uncert.	8%	2%	-2010-04
Theory uncer.	5%	3%	(1902.00134)
·			

ATLAS uncertainty on the $H \to \mu^+ \mu^-$ signal strength is 50%, CMS HL-LHC expectation is 10%.

SiD and ILD: ILC TDR Volume 4 (arXiv:1306.6329)

ILD/SiD at ILC: Higgs to Invisible (Hadronic Channel)

ILD:"...95% C.L. UL on BR(H →invisible) of 0.23%" (2002.12048)

SiD at ILC: Higgs to Invisible MVA (Hadronic Channel)

Preliminary multivariate analysis using separate Boosted Decision Trees (BDTs) for each background category should significantly improve sensitivity.

ILD at ILC: Higgs to Muon Pairs

Table 10: Expected precisions on BF($H \to \mu^+ \mu^-$) for $\sqrt{s} = 250 \, \text{GeV}$ (ILC250), $\sqrt{s} = 500 \, \text{GeV}$ (ILC500) and their combination (ILC250+500). The luminosities and polarisation sharing correspond to the standard ILC running scenario as detailed in Sec. 1.

$\sqrt{s} = 250 \text{ GeV}$	$q\overline{q}H$	$\nu \overline{\nu} H$	ILC250	ILC250+500	
L	34%	113%	23%		
R	36%	111%	23%		
$\sqrt{s} = 500 \text{ GeV}$	$q\overline{q}H$	$\nu \overline{\nu} H$	ILC500	17%	
L	43%	37%	24%		
R	48%	106%	2470		

The study assumes 900 fb⁻¹ (900 fb⁻¹) at $\sqrt{s}=250$ GeV for LR (RL) polarization and 1600 fb⁻¹(1600 fb⁻¹) at $\sqrt{s}=500$ GeV for LR (RL) polarization.

Exotic Higgs Decay in Beyond the SM (BSM)

Decay	Decay Liu, Wang, Zhang 95% C.L. limit on Br 1612.09284						
Mode	LHC	HL-LHC	CEPC	ILC	FCC-ee		
${/\!\!\!\!/}_{\rm T}$	0.23 [49, 50]	0.056 [12-14]	0.0028 [16]	0.0025 [17]	0.005 [18]		
$\overline{(bar{b})\!+\!E_{ m T}}$	_	[0.2]	1×10^{-4}	2×10^{-4}	5×10^{-5}		
$(jj) + E_{ m T}$	_	_	5×10^{-4}	5×10^{-4}	2×10^{-4}		
$(au^+ au^-) + E_{ m T}$	_	[1]	$8 \times 10^{-4} *$	1×10^{-3}	3×10^{-4}		
$bar{b}+ ot\!\!\!E_{ m T}$	_	$[0.2] [\overline{39}]$	3×10^{-4}	4×10^{-4}	1×10^{-4}		
$jj\!+\!E_{ m T}$	_	_	5×10^{-4}	7×10^{-4}	2×10^{-4}		
$ au^+ au^-\!+\!E_{ m T}$	_	_	$8 \times 10^{-4} *$	1×10^{-3}	3×10^{-4}		
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	1.7 [51]	(0.2)	4×10^{-4}	9×10^{-4}	3×10^{-4}		
$(c\bar{c})(c\bar{c})$	_	(0.2)	8×10^{-4}	1×10^{-3}	3×10^{-4}		
(jj)(jj)	_	[0.1]	1×10^{-3}	2×10^{-3}	7×10^{-4}		
$(bar{b})(au^+ au^-)$	[0.1]* $[52]$	[0.15]	$4 \times 10^{-4} *$	6×10^{-4}	2×10^{-4}		
$(au^+ au^-)(au^+ au^-)$) [1.2]* [53]	$[0.2{\sim}0.4]$	$1 \times 10^{-4} *$	2×10^{-4}	5×10^{-5}		
$(jj)(\gamma\gamma)$	_	[0.01]	1×10^{-4}	2×10^{-4}	3×10^{-5}		
$(\gamma\gamma)(\gamma\gamma)$	$[7 \times 10^{-3}] [54]$	$4 \times 10^{-4} *$	1×10^{-4}	1×10^{-4}	3×10^{-5}		

SiD at ILC: Exotic Higgs to Four Taus

Figure 1: At left, the fit to the $h_{1,2}$ recoil mass distribution after full 4τ analysis selection. At right, the fit to the reconstructed $a_1 \to \mu^+\mu^-$ mass distribution after the full $2\mu 2\tau$ selection. The plots assume $\sqrt{s} = 250$ GeV, 250fb^{-1} integrated luminosity, and 80% e_L^- , 30% e_R^+ beam polarization.

		Case I	Case II	Case III
Ī	S	121	182	302
	B	0.4	1.3	1.7

Table 2: Signal (S) and background (B) yields for the h_2 , h_1 and h_2+h_1 searches in early running at the ILC, respectively. The yields assume $\sqrt{s} = 250 \text{ GeV}$, 250fb^{-1} integrated luminosity, and $80\% \ e_L^-$, $30\% \ e_R^+$ beam polarization.

This study is motivated by the NMSSM and the LEPII excess near 96 GeV. See 1309.0021 for details. The $h_2 \to (\tau^+\tau^-)(\tau^+\tau^-)$ topology has minimal background.

EPS-HEP2021, 27 July 2021 – p.14/17

Conclusion: ILC sharply improves on the HL-LHC!

Invisible and Rare SM Higgs Decays

Decay	LHC	HL-LHC	ILC
H oinv	BR<11%	BR<3-4%	BR<0.2% a
$H \rightarrow \mu^+\mu^-$	$\Delta\mu/\mu \approx 50\%$	$\Delta\mu/\mu \approx 10\%$	$\Delta_{BR}/BR \approx 17\%$

Exotic BSM Higgs Decays

^aImprovements expected with multivariate analysis.

Backup: Higgs to Invisible (Hadronic Channel)

Table 2: Selection table for $\sqrt{s} = 250$ GeV, $(P_{e^-}, P_{e^+}) = (-0.8, +0.3)$.						
cut condition	signal (efficiency)	all bkg (efficiency)	significance			
No Cut	18917 (1.000)	$1.417 \times 10^8 (1.000)$	1.59			
$N_{lep} = 0$	18880 (0.998)	$9.732 \times 10^7 (0.687)$	1.91			
Pre-Cut	18202 (0.962)	$3.358 \times 10^6 (0.024)$	9.91			
$N_{pfo} > 15 \& N_{charged} > 6$	17918 (0.947)	$2.539 \times 10^6 (0.018)$	11.2			
$p_{Tjj} \in (20,80) \text{GeV}$	16983 (0.898)	$1.368 \times 10^6 (0.010)$	14.4			
$M_{jj} \in (80, 100) \text{GeV}$	14158 (0.748)	713194 (0.005)	16.6			
$ \cos \theta_{jj} < 0.9$	13601 (0.719)	539921 (0.004)	18.3			
$M_{recoil} \in (100, 160)$ GeV	13585 (0.718)	244051 (0.002)	26.8			

Table 3: Selection table for $\sqrt{s} = 250$ GeV, $(P_{e^-}, P_{e^+}) = (+0.8, -0.3)$.						
cut condition	signal (efficiency)	all bkg (efficiency)	significance			
No Cut	12776 (1.000)	$7.785 \times 10^7 (1.000)$	1.45			
$N_{lep} = 0$	12752 (0.998)	$4.893 \times 10^7 (0.628)$	1.82			
Pre-Cut	12270 (0.960)	$1.329 \times 10^6 (0.017)$	10.6			
$N_{pfo} > 15 \& N_{charged} > 6$	12067 (0.945)	852285 (0.011)	13.0			
$p_{Tjj} \in (20,80) \text{GeV}$	11394 (0.892)	285847 (0.004)	20.9			
$M_{jj} \in (80, 100)$ GeV	9481 (0.742)	165798 (0.002)	22.6			
$ \cos heta_{jj} < 0.9$	9126 (0.714)	130070 (0.002)	24.5			
$M_{recoil} \in (100, 160)$ GeV	9115 (0.713)	62979 (0.001)	33.9			

Requirement (Full)	S(LR)	B(LR)	$\frac{S}{\sqrt{S+B}}$	S(RL)	B(RL)	$\frac{S}{\sqrt{S+B}}$	
Track, lepton, PFO multiplicity requirements imposed (2105.00128)							
$20 \leq p_T^{vis} \leq $ 70 GeV	1.25e+04	7.71e+06	4.48	8.84e+03	1.07e+06	8.53	
$75 \leq m_{vis} \leq 105 \mathrm{GeV}$	1.16e+04	1.79e+06	8.63	8.21e+03	3.14e+05	14.5	
$N_{jet} = 2$	1.16e+04	1.79e+06	8.63	8.21e+03	3.14e+05	14.5	
$-0.9 \le \cos \theta_{jj} \le -0.2$	1.08e+04	8.68e+05	11.5	7.65e+03	1.78e+05	17.7	
$110 \le m_{recoil} \le 150$	1.03e+04	3.6e+05	17	7.33e+03	8.39e+04	24.2	

Full simulation (ILCSoft v02-00-02, SID o2_v3) scaled from 250fb^{-1} to 900fb^{-1} .