

VOLUME 1

Deutschmann, Maltoni, Wiesemann, MZ, arXiv: 1808.01660

VOLUME 2 Pagani, Shao, MZ, arXiv:2005.10277

EPS-HEP Conference 2021

European Physical Society conference on high energy physics 2021 Online conference, July 26-30, 2021

Or why not to use $b\overline{b}H$ as a probe of the bottom Yukawa

Marco Zaro

Probing y_b

- The main current source of sensitivity for y_b is via the H→bb decay mode
- ATLAS and CMS measurements are compatible with SM, with ~15% uncertainty
- The H→bb branching fraction may be affected by other unconstrained channels (H→gg and H→inv.)
- Can we use bbH production to extract yb (as ttH for yt)?

- $b\overline{b}H$ has been thought as a clean access to y_b . Is it really the case?
- Can other channel pollute the extraction of y_b ?
- Consider the bbH final state. Which processes can contribute?

- $b\overline{b}H$ has been thought as a clean access to y_b . Is it really the case?
- Can other channel pollute the extraction of y_b ?
- Consider the bbH final state. Which processes can contribute?

- $b\overline{b}H$ has been thought as a clean access to y_b . Is it really the case?
- Can other channel pollute the extraction of y_b ?
- Consider the bbH final state. Which processes can contribute?

- $b\overline{b}H$ has been thought as a clean access to y_b . Is it really the case?
- Can other channel pollute the extraction of y_b ?
- Consider the bbH final state. Which processes can contribute?

- $b\overline{b}H$ has been thought as a clean access to y_b . Is it really the case?
- Can other channel pollute the extraction of y_b ?
- Consider the bbH final state. Which processes can contribute?

INFN

- $b\overline{b}H$ has been thought as a clean access to y_b . Is it really the case?
- Can other channel pollute the extraction of y_b ?
- Consider the bbH final state. Which processes can contribute?

 $\mathcal{Q}_{\mathcal{O}}$

Remember: Higgs couplings ~ mass

• Let us compare the y_b and y_t induced diagrams

• The latter formally enters NLO $(y_b y_t)$ and NNLO (y_t^2) corrections of the former

• Let us compare the y_b and y_t induced diagrams

- The latter formally enters NLO $(y_b y_t)$ and NNLO (y_t^2) corrections of the former
- But yt² contributes to almost 3 times the yb² when both are evaluated at their lowest order

yt-induced bbH Deutschmann, Maltoni, Wiesemann, MZ, arXiv: 1808.01660

Let us compare the y_b and y_t induced diagrams

- The latter formally enters NLO $(y_b y_t)$ and NNLO (y_t^2) corrections of the former
- But y_t^2 contributes to almost 3 times the y_b^2 when both are evaluated at their lowest order
- NLO corrections to both terms (and to the interference) are computed with MG5_aMC in the Born-improved HEFT

• Let us compare the y_b and y_t induced diagrams

- The latter formally enters NLO (y_by_t) and NNLO (y_t^2) corrections of the former
- But y_t^2 contributes to almost 3 times the y_b^2 when both are evaluated at their lowest order
- NLO corrections to both terms (and to the interference) are computed with MG5_aMC in the Born-improved HEFT
- At NLO (including terms ~y_t² formally N³LO for the y_b² piece), the situation gets even worse

bbH at NLO

- The y_t^2 contribution has very large NLO corrections: inclusively, K=2.5! For y_b^2 K=1.5.The y_b^2 contribution to bbH is further suppressed
- Both K factors grow with the Higgs p_T, with y_t² showing a much harder spectrum

Pagani, Shao, MZ, arXiv:2005.10277

Pagani, Shao, MZ, arXiv:2005.10277

Let us go beyond QCD-effects, and consider the Complete-NLO corrections to bbH

gHzz-induced bbH

Pagani, Shao, MZ, arXiv:2005.10277

Let us go beyond QCD-effects, and consider the Complete-NLO corrections to bbH

Pagani, Shao, MZ, arXiv:2005.10277

Let us go beyond QCD-effects, and consider the Complete-NLO corrections to bH

gHZZ-induced bbH Pagani, Shao, MZ, arXiv:2005.10277

Let us go beyond QCD-effects, and consider the Complete-NLO corrections to bH

 Complete-NLO corrections computed with MG5_aMC, first process in the 4FS

gHZZ-induced bbH Pagani, Shao, MZ, arXiv:2005.10277

Let us go beyond QCD-effects, and consider the Complete-NLO corrections to bH

- Complete-NLO corrections computed with MG5_aMC, first process in the 4FS
- The α/α_s suppression is compensated by g_{HZZ}/yb

Pagani, Shao, MZ, arXiv:2005.10277

Let us go beyond QCD-effects, and consider the Complete-NLO corrections to bH

- Complete-NLO corrections computed with MG5_aMC, first process in the 4FS
- The α/α_s suppression is compensated by g_{HZZ}/yb
- If (at least) I b-jet is required, almost 2/3 of the cross-section is not sensitive to y_b

Differential distributions N_b≥I

aMC@N

MadGra

Goodbye y_b...

• Putting all together, asking for 1 b jet (ak_T, R=0.4, p_T>30 GeV, $|\eta|$ <2.5)

Higgs decay remains the most effective way to constrain y_b Marco Zaro, 26-07-2021 8

Conclusion

- Hbb final state receives large contributions not proportional to y_b
- Relevant whenever H+b's is a signal or background (HH, ...)
- Looking at differential observables (jet veto, small/large p_T, ...) does not improve the picture (more in backup)
- Allowed range for y_b in current global fits unlikely to alter this (sad) picture

Conclusion

- Hbb final state receives large contributions not proportional to y_b
- Relevant whenever H+b's is a signal or background (HH, ...)
- Looking at differential observables (jet veto, small/large p_T, ...) does not improve the picture (more in backup)
- Allowed range for y_b in current global fits unlikely to alter this (sad) picture

Marco Zaro, 26-07-2021

... or maybe not?

Resurrecting $b\bar{b}h$ with kinematic shapes arXiv:2011.13945, see talk by Zhuoni Qian

Christophe Grojean, a,b Ayan Paul, a,b and Zhuoni Qiana,c

^a DESY, Notkestraße 85, D-22607 Hamburg, Germany
^b Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
^c Department of Physics, Shandong University, Jinan, Shandong 250100, China E-mail: christophe.grojean@desy.de, ayan.paul@desy.de,
zhuoni.qian@desy.de

- New analysis based on modern AI techniques and game theory
- Authors claim to be able to reduce the ggF and VH bkgds, getting O(20%) constraints on y_b from bbH
- VBF is not considered in the analysis
- Eager to see how the movie ends...

Backup

Computing NLO corrections to $b\overline{b}H$

- NLO corrections to y_b-induced bbH known for long time <u>5FS NLO</u>: Dicus, hep-ph/9811492, Balazs, hep-ph/9812263; <u>5FS NNLO</u>: Harlander, hep-ph/ 0304035 <u>4FS NLO</u>: Dittmaier, hep-ph/0309204, Dawson, hep-ph/0508293; <u>4FS NLOPS</u>: Wiesemann, arXiv:1409.5301, Jager, arXiv:1509.05843, Krauss, arXiv:1612.04640
- y_t-induced contribution missing, mostly for two reasons
 - Loop-induced at LO→ 2 loops at NLO with 3 particles in the final state. Beyond current 2-loop technology Solution: Use an HEFT to shrink the top loop into a pointlike interaction
 - If mb≠0, in the HEFT y_b receives a correction ~y_t. Obtained_ _ by matching HEFT with 2-loop SM.
 Reproduced results by Chetyrkin et al, PRL 1997, NPB 1997, hep-ph/9708255
- This made it possible to use modern automatic codes (MadGraph5_aMC@NLO) to compute simultaneously the y_t^2 , y_b^2 and y_ty_b terms at NLO QCD
- We use m_H=125 GeV, m_b^{pole}=4.92 GeV, m_t=172.5 GeV, NNPDF3.1 (n_f=4), y_b renorm. in MSbar, $\mu_{R/F}$ =H_T/4

 $\delta y_b = y_t \left(\frac{\alpha_s}{2\pi}\right)^2 \left(\frac{m_b}{m_t}\right) \left[\frac{C_F}{2\epsilon} - \right]$ $\frac{C_F}{24} \left(5 - 6 \log \left(\frac{\mu_R^2}{m_t^2} \right) \right) \right]$

EFT and bbH

EFT and $b\overline{b}H$

Other distributions

- The b-jet p_T distribution has a similar behaviour w.r.t. $p_T(H)$
- If two b-jets are present, M(bb) peaks at lower value for the $y_t{}^2$ contribution than for the $y_b{}^2$

Marco Zaro, 26-07-2021

How to improve the sensitivity on y_b ?

- One can try to enhance the y_b^2 component by exploiting the different kinematics of the y_t^2 and y_b^2 contribution. We will focus in the 1b jet bin
 - y_t^2 is more likely to produce b jets with two b quarks in it (bb jets). This happens ~25% of the times one has a b jet.

→Veto bb jets

• y_t^2 has a harder Higgs p_T spectrum. Stay at low $p_T(H)$

Setup

Complex-mass scheme, with

 $m_Z = 91.15348 \text{ GeV}, \quad \Gamma_Z = 2.4946 \text{ GeV}, \quad m_W = 80.35797 \text{ GeV}, \quad \Gamma_W = 2.08899 \text{ GeV},$ (10) $m_H = 125.0 \text{ GeV}, \quad \Gamma_H = 0, \quad m_t = 173.34 \text{ GeV}, \quad \Gamma_t = 1.3692 \text{ GeV},$ (11)

- $m_b^{pole}=4.58$ GeV, y_b renorm. in MSbar $\mu_{R/F}=H_T/4$, NNPDF3.1 NNLO evol, ($n_f=4$)
- EW renormalisation in the G_{μ} scheme,
- Jets are clustered with anti-k_T, p_T>30 GeV, R=0.4 and $|\eta|$ <4.5. B-tagging up to $|\eta|$ <2.5

Results

accuracy (i)	σ_i [fb]	$\sigma_i/\sigma_{ m LO_{QCD}}$	cuts
LO _{QCD}	$297^{+55.9\%}_{-34.1\%}$	1.00	
LO	$399^{+42.9\%}_{-26.9\%}$	1.34	
$\rm NLO_{QCD}$	$450^{+19.2\%}_{-20.7\%}$	1.51	NO CUT
$\rm NLO_{QCD+EW}$	$442^{+18.5\%}_{-20.4\%}$	1.49	
NLO _{all}	$639^{+14.3\%}_{-15.6\%}$	2.15	
LO _{QCD}	$67.2^{+49.1\%}_{-30.8\%} (64.6^{+49.5\%}_{-31.1\%})$	1.00 (1.00)	
LO	$154_{-16.9\%}^{+24.2\%}$ $(142_{-17.5\%}^{+25.2\%})$	2.29 (2.19)	
$\rm NLO_{QCD}$	$94.4^{+12.3\%}_{-16.2\%} (69.6^{+2.3\%}_{-11.3\%})$	1.40 (1.08)	$N_{j_b} \ge 1$
$\rm NLO_{QCD+EW}$	$92.0^{+11.4\%}_{-15.8\%} (67.3^{+2.4\%}_{-10.6\%})$	1.37 (1.04)	
NLO _{all}	$247^{+8.9\%}_{-8.9\%} (139^{+0.9\%}_{-5.3\%})$	3.67 (2.15)	
$\mathrm{LO}_{\mathrm{QCD}}$	$61.7^{+49.6\%}_{-31.1\%} (59.0^{+50.0\%}_{-31.3\%})$	1.00 (1.00)	
LO	$105^{+31.1\%}_{-20.8\%}$ (93.3 ^{+33.7%})	$1.71 \ (\ 1.58)$	
$\rm NLO_{QCD}$	$87.9^{+13.1\%}_{-16.6\%} (66.0^{+2.2\%}_{-12.3\%})$	1.43 (1.12)	$N_{j_b} = 1$
$\rm NLO_{QCD+EW}$	$85.7^{+12.2\%}_{-16.3\%} (63.9^{+2.3\%}_{-11.7\%})$	1.39 (1.08)	
NLO _{all}	$187^{+10.4\%}_{-10.6\%}$ (107 ^{+1.3\%} _{-8.4\%})	3.03 (1.82)	
$\mathrm{LO}_{\mathrm{QCD}}$	$5.57^{+45.4\%}_{-29.0\%}$	1.00	
LO	$48.4^{+9.0\%}_{-8.2\%}$	8.70	
$\rm NLO_{QCD}$	$6.53^{+1.8\%}_{-10.8\%}$	1.17	$N_{j_b} \ge 2$
$\rm NLO_{QCD+EW}$	$6.30^{+1.0\%}_{-10.2\%}$	1.13	
$\mathrm{NLO}_{\mathrm{all}}$	$59.8^{+4.0\%}_{-3.7\%}$	10.75	

() \Leftrightarrow light jet veto

Differential distributions $N_b = I$

hight het weto

Differential distributions $N_b=2$

