Higgs Physics at the LHeC and FCC-sh

$\mathrm{LH}_{e} \mathrm{C}$

Uta Klein

(7) LIVERSPOOOL
on behalf of
the LHeC \&
FCC-eh Study Group

$\mathbb{L H}_{\bullet} \mathrm{O}$

튼드늘

electrons for eh : ERL-e + LHC [FCC-hh]

- Two 802 MHz Electron LINACs + 2x3 return arcs: using energy recovery in same structure: sustainable technology with power consumption < 100 MW instead of 1 GW for a conventional LINAC.
- Beam dump: no radioactive waste!
- high electron polarisation of $\mathbf{8 0}-\mathbf{9 0 \%}$

Concurrent eh and hh operation with same running time!

Genuine Twin Collider idea holds for LHC and FCC-hh.
ep peak lumi $10^{34} \mathrm{~cm} \mathrm{~s}^{-2} \mathrm{~s}^{-1}$ (based on existing HL-LHC design)

- Operation scenario: F. Bodry et al. CERN-ACC-2018-0037 [arxiv:1810.13022]

■ LHeC [FCC-eh] L= 1000 [2000] fb ${ }^{-1}$ total collected in $\mathbf{1 0}$ [20] years
■ 'No’ pile-up: <0.1@LHeC; ~1@FCCeh
ERL design detailed in LHeC CDR: J. Phys. G: Nucl. Part. Phys. 39 (2012) 075001 [arXiv:1206.2913] and CDR update CERN-ACC-Note-2020-0002 [arXiv:2007.14491] accepted by J. Phys. G. See FCC Week 2021 for project news.

SM Higgs Production in ep

Total cross section [fb]

(LO QCD CTEQ6L1 $\mathrm{M}_{\mathrm{H}}=125 \mathrm{GeV}$)

c.m.s. energy	1.3 TeV LHeC	3.5 TeV FCC-eh
CC DIS	109	560
NC DIS	21	127
P=-80\%		
CC DIS	196	1008
NC DIS	25	148

In ep, direction of quark (FS) is well defined.

- Scale dependencies of the LO calculations are in the range of 5-10\%. Tests done with MG5 and CompHep.
- NLO QCD corrections are small, but shape distortions of kinematic distributions up to 20%. QED corrections up to 5\%.
[J. Blumlein, G.J. van Oldenborgh , R. Ruckl, Nucl.Phys.B395:3559,1993]
[B.Jager, arXiv:1001.3789]

SM Higgs Production in ep

Total cross section [fb]
(LO QCD CTEQ6L1 $\mathrm{M}_{\mathrm{H}}=125 \mathrm{GeV}$)

c.m.s. energy	1.3 TeV LHeC	3.5 TeV FCC-eh
CC DIS	109	560
NC DIS	21	127
P=-80\%		
CC DIS	196	1008
NC DIS	25	148

DIS Kinematics

$s=(k+P)^{2}$
$(x P+q)^{2}=m^{2}, P^{2}=M_{p}^{2}$
if $\left(Q^{2} \gg x^{2} M_{p}^{2}, m^{2}\right)$:
$q^{2}+2 x P q=0$
$x=\frac{Q^{2}}{2 P q} \quad \begin{array}{ll}\text { relation to pp LO QCD } \\ \mathbf{x}_{1,2}=(\mathrm{M} / \mathrm{Vs}) \exp (\pm \mathrm{y})\end{array}$
$Q^{2}=\operatorname{sxy} \quad \mathbf{Q}^{2} \sim \mathbf{M}^{\mathbf{2}}$

η Distributions at FCC-eh

MadGraph scale: p_{T} of leading jet

 -Parton-level-

Higgs decay particles (here to \mathbf{W}^{*} W), struck quark and scattered lepton are well separated in detector acceptance.

Higgs in eh: cut based results

Masahiro Tanaka, Masahiro Kuze, Tokyo Tech 2017/2018
See also M Schott@Off-shell 2021, Hbb in ep using ATLAS software
Example of samples: Unpolarised ($P=0$) samples $E_{e}=60 \mathrm{GeV}$

$E_{p}=7 \mathrm{TeV}$	LHeC			$E_{p}=50 \mathrm{TeV}$	FCC		
	σ (pb)	Nsample	$\mathrm{N} / \sigma\left(\mathrm{fb}^{-1}\right)$		σ (pb)	Nsample	$\mathrm{N} / \sigma\left(\mathrm{fb}^{-1}\right)$
Signal CC:H->bb	0.113	0.2M	1760	Signal CC:H->bb	0.467	0.15 M	321
CCijij no top	4.5	2.6M	570	CCijij no top	21.2	1.95M	92
CC single top	0.77	0.9M	1160	CC single top	9.75	1.05M	108
CC Z	0.52	0.6M	1160	CC Z	1.6	0.15 M	94
NC Z	0.13	0.15M	1140	NC Z	0.33	0.15 M	455
PAjiij	41	14M	350	PAiii	262	12.9M	49

> MadGraph and Delphes ep-style detector
> + flat parton-level b-tagging for $|\eta|<3.0$
> conservative HFL tagging:
> b: 60%, c: 10%, udsg: 1%
> CAL coverage $|\eta|<5$ LHeC [<6 FCC-eh]

Mass of 2 b-jets after event selection

$\mathrm{H} \rightarrow \mathrm{bb}: \mathbf{S} / \mathrm{N}>1$

 using conservative light quark misID and simple cuts```
confirmed
earlier & post CDR
studies
```

$100 \mathrm{fb}^{-1}$
$\sim 1$ year of data


Note: plenty of single Z, W and top in ep


Higgs@LHeC: see also CDR \& PRD.D82:016009,2010

## Hunting for Precision Hbb

## Events


'Worst' case scenario plot : Photoproduction background (PHP) is assumed to be 100\%! PHP update: Modelled via Weiszaecker-Williams and cross-checked with Pythia.
$\rightarrow$ addition of small angle electron taggers will reduce PHP to ~1-2\%

## Higgs in ep - clean $S / B$, no pile-up

$\rightarrow$ further improvements using BDT
Uta Klein \& Daniel Hampson \& Izzy Harris BSc 2017


## WW to Higgs to W*W to 4 jets

- CC DIS Higgs production and decay to $W^{*}$ W gives direct access to $g^{4}{ }_{H}$ ww assuming no NP in production and decay
$\rightarrow$ important process: allows nearly direct access to $g_{H w w}$ and $\boldsymbol{\delta g}_{\text {нww }}=1 / 4 \boldsymbol{\delta} \boldsymbol{\mu} / \boldsymbol{\mu}\left(H \rightarrow W^{*} W\right)$


New study for FCC-eh at 3.5 TeV: [arXiv:2007.14491]
Signal and Background generated by
MG5+Pythia using $B R(H \rightarrow W W)=21.5 \%$ and
67\% for $W \rightarrow$ jj decay:
$\boldsymbol{\sigma}=100 \mathrm{fb} \sim 45 \%$ of $\boldsymbol{\sigma}(\mathrm{HWW})$
> passed thru FCC-eh Delphes detector
> background processes dominated by CC multijets, top and single H,W, Z + jets $\left(4^{\text {th }}+\right.$ more jets from shower)
$\rightarrow$ various anti-kt R choices studied for the resolved case: all 4 jets reconstructed $\rightarrow$ optimal choice $\mathrm{R}=0.7$

Note: more event categories and decay modes could be added a la LHC-style studies

## H $\rightarrow$ WW* analysis strategy \& results



Reconstructed $\mathrm{W}^{*}$, W and Higgs,


Reconstructed $\mathrm{W}^{*}$, W and Higgs, after jet combinatorics based on selecting at least 5 jets with $\mathrm{p}_{\mathrm{T}}>\mathbf{6 ~ G e V}$ and finding the higgs candidate which has two jet pairs with $\min \Delta \boldsymbol{\eta}$, and $\max \Delta \boldsymbol{\eta}$ between Higgs and fwd jet, and max $\boldsymbol{\Delta} \boldsymbol{\phi}$ between Higgs and ETmiss or Higgs and fwd jet $\rightarrow$ passed to BDT
$\rightarrow$ Acceptance x efficiency of $20 \%$ and purity of $68 \%$ that true forward jet is identified for pre-selected events
$\rightarrow$ HWW signal strengths of $\mathbf{1 . 9}$ to $\mathbf{2 . 5 \%}$ reached depending on background assumptions and pre-selection \& BDT details
$\rightarrow$ very nice results expected for $\delta \mathrm{g}_{\mathrm{Hww}}$ of 0.5 to $0.6 \%$ from this channel only

## SM Higgs Signal Strengths in ep



Charged Currents: ep $\rightarrow$ vHX $\quad$ Neutral Currents: ep $\rightarrow$ eHX
$\rightarrow$ NC and CC DIS together over-constrain Higgs couplings in a combined SM fit.
$E_{e}=60 \mathrm{GeV} \operatorname{LHeC} E_{p}=7 \mathrm{TeV} L=1 \mathrm{ab}^{-1} \mathrm{HE}-\mathrm{LHC} \mathrm{E}_{\mathrm{p}}=14 \mathrm{TeV} \mathrm{L}=2 \mathrm{ab}^{-1} \quad \mathrm{FCC}: E_{p}=50 \mathrm{TeV} \mathrm{L}=2 \mathrm{ab}^{-1}$

## Stand-alone ep к Coupling Fits

$\rightarrow$ Assuming SM branching fractions weighted by the measured k values, and $\Gamma_{\mathrm{md}}$ (c.f. CLIC model-dependent method)
 see e.g. [arXiv:1608.07538]

Note: Higgs in ePb for FCC-eh


For the near future*: SM Higgs Couplings $\& \delta \boldsymbol{\sigma}_{\text {Higgs }}(\mathrm{pp})$
Update of LHeC ES submission CERN-ACC-2018-0084 \& CDR update [arXiv:2007.14491]


LHeC and HL-LHC prospects

For LHC: Precise Higgs cross section prediction with LHeC input:
$\delta \sigma(p p \rightarrow$ Higgs $)=\left[0.3(p d f)+0.2\left(\alpha_{s}\right)\right] \%$

* see also backup slide


## Couplings and correlations



## FCCee+eh+hh



PRELIMINARY
Higgs production in the three collider modes ee, ep, pp are also important for theory development

## Wrap Up

- LHeC and FCC-eh could measure the dominant Higgs couplings, including ttH, to high precision [CC+NC DIS, no pile-up, clean final state..]
- Higgs measurements in ep are self consistent, experimentally and theoretically, based on DIS cross sections with very small systematic uncertainties.
- Striking synergy of ep (>~1 TeV) and ee (250-350 GeV) and pp for Higgs coupling measurements, to remove also HZZ and HWW and further correlations!
- Energy frontier ep would empower the physics potential of pp (non-resonant searches, EW, Higgs..) through high precision QCD measurements: flavour separated PDFs at $\mathbf{N}^{3}$ LO, $\alpha_{s}$ to per mille ...

Combining pp with ep,
a very powerful Higgs facility can be established
at the HL-LHC already in the 30ties
and later at the FCC eh+hh.

## Additional Sources \& Thanks to

- @ EPS2021 Talks/Abstracts:
1005.BSM Physics at the LHeC and the FCC-he : Oliver Fischer

1012. Precision QCD in ep collisions at the LHeC, merged with
1018.Small-x Physics at the LHeC and FCC-he : Claire Gwenlan
1013. Electron-Ion Collisions at the LHeC and FCC-he : Guilherme Milhano
1014. Higgs physics at the LHeC and the FCC-he : Uta Klein
1021.The ERL Facility PERLE at Orsay (poster) : Ben Hounsell
1022.The Large Hadron-electron Collider at CERN: Status and Plans (poster) : Kevin Andre
1024.The LHeC as Part of the HL-LHC Programme, merged with
1015. Precision electroweak measurements at the LHeC and the FCC-he : Daniel Britzger
1026.Top physics at the LHeC and the FCC-he : Subhasish Behera

- @FCC Week 2021: https://indico.cern.ch/event/995850/

Project status, LHeC and FCC-eh Detector Status [https://indico.cern.ch/event/995850/contributions/4420316/d, physics news

- @IAS HL-LHC Upgrade and LHeC Option by O Bruening: https://indico.cern.ch/event/971970/contributions/4174477/
- CDR Update [arXiv:2007.14491]
- "On the Relation of the LHeC and the LHC" [arXiv:1211.5102]
- FCC to EU Strategy CERN-ACC-2018-0056
- LHeC to EU Strategy CERN-ACC-2018-0084
- Higgs branching fractions and uncertainties taken from https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR
- Special thanks to my colleagues in the LHeC/FCC-eh study group and
to Jorge de Blas for the discussion of model-dependent coupling fits.


## Additional material

The strategy puzzle as seen by the Chair of CERN Council, Ursula Bassler

Possible scenarios of future collidersProton collider
Electron collider


40 km tunnel
$\stackrel{\stackrel{C}{C}}{\substack{\text { ᄃ }}} 4$
100km tunne
CepC: $90 / 160 / 240 \mathrm{GeV}$
$16 / 2.6 / 5.6 \mathrm{ab}^{-1}$



## Rates and Geometric acceptances

| $\mathrm{P}_{\mathrm{e}}=-80 \%$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LHeC@1.3 TeV, $1 \mathrm{ab}^{-1}$ FCC-eh@3.5 TeV, $2 \mathrm{ab}^{-1}$ |  |  |  |  |  |
|  |  | Number of Events |  |  |  |
| Channel | Fraction | Charged Current |  | Neutral Current |  |
|  |  | LHeC | FCC-eh | LHeC | FCC-eh |
| $b \bar{b}$ | 0.581 | 114500 | 1208000 | 14000 | 175000 |
| $W^{+} W^{-}$ | 0.215 | 42300 | 447000 | 5160 | 64000 |
| $g g$ | 0.082 | 16150 | 171000 | 2000 | 25000 |
| $\tau^{+} \tau^{-}$ | 0.063 | 12400 | 131000 | 1500 | 20000 |
| $c \bar{c}$ | 0.029 | 5700 | 60000 | 700 | 9000 |
| ZZ | 0.026 | 5100 | 54000 | 620 | 7900 |
| $\gamma \gamma$ | 0.0023 | 450 | 5000 | 55 | 700 |
| $Z \gamma$ | 0.0015 | 300 | 3100 | 35 | 450 |
| $\mu^{+} \mu^{-}$ | 0.0002 | 40 | 410 | 5 | 70 |
| $\sigma[\mathrm{pb}]$ |  | 0.197 | 1.04 | 0.024 | 0.15 |



## Combined HL-LHC and LHeC

| Parameter | Uncertainty |  |  |
| :--- | :---: | :---: | :---: |
|  | HL-LHC | LHeC | HL-LHC+LHeC |
| $\kappa_{W}$ | 1.7 | 0.75 | 0.50 |
| $\kappa_{Z}$ | 1.5 | 1.2 | 0.82 |
| $\kappa_{g}$ | 2.3 | 3.6 | 1.6 |
| $\kappa_{\gamma}$ | 1.9 | 7.6 | 1.4 |
| $\kappa_{Z_{\gamma}}$ | 10 | - | 10 |
| $\kappa_{c}$ | - | 4.1 | 3.6 |
| $\kappa_{t}$ | 3.3 | - | 3.1 |
| $\kappa_{b}$ | 3.6 | 2.1 | 1.1 |
| $\kappa_{\mu}$ | 4.6 | - | 4.4 |
| $\kappa_{\tau}$ | 1.9 | 3.3 | 1.3 |

Table 9.5: Results of the combined HL-LHC $+\mathrm{LHeC} \kappa$ fit. The output of the fit is compared with the results of the HL-LHC and LHeC stand-alone fits. The uncertainties of the $\kappa$ values are given in per cent.

| Process | $\sigma_{H}[\mathrm{pb}]$ | $\Delta \sigma_{\text {scales }}$ | $\Delta \sigma_{\mathrm{PDF}+\alpha_{\mathrm{s}}}$ |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  | HL-LHC PDF | LHeC PDF |
| Gluon-fusion | 54.7 | $5.4 \%$ | $3.1 \%$ | $0.4 \%$ |
| Vector-boson-fusion | 4.3 | $2.1 \%$ | $0.4 \%$ | $0.3 \%$ |
| $p p \rightarrow W H$ | 1.5 | $0.5 \%$ | $1.4 \%$ | $0.2 \%$ |
| $p p \rightarrow Z H$ | 1.0 | $3.5 \%$ | $1.9 \%$ | $0.3 \%$ |
| $p p \rightarrow t \bar{t} H$ | 0.6 | $7.5 \%$ | $3.5 \%$ | $0.4 \%$ |

Table 9.4: Predictions for Higgs boson production cross sections at the HL-LHC at $\sqrt{s}=14 \mathrm{TeV}$ and its associated relative uncertainties from scale variations and two PDF projections, HL-LHC and LHeC PDFs, $\Delta \sigma$. The PDF uncertainties include uncertainties of $\alpha_{\mathrm{s}}$.

## Higgs Boson studies at future particle colliders

Table 3. Expected relative precision (\%) of the $\kappa$ parameters in the kappa- 0 scenario described in Section 2 for future accelerators. Colliders are considered independently, not in combination with the HL-LHC. No BSM width is allowed in the fit: both $\mathrm{BR}_{\text {unt }}$ and $\mathrm{BR}_{\text {inv }}$ are set to 0 , and therefore $\kappa_{V}$ is not constrained. Cases in which a particular parameter has been fixed to the SM value due to lack of sensitivity are shown with a dash $(-)$. A star $(\star)$ indicates the cases in which a parameter has been left free in the fit due to lack of input in the reference documentation. The integrated luminosity and running conditions considered for each collider in this comparison are described in Table 1. FCC-ee/eh/hh corresponds to the combined performance of $\mathrm{FCC}-\mathrm{ee}_{240}+\mathrm{FCC}-\mathrm{ee}_{365}$, FCC -eh and FCC-hh. In the case of HE-LHC, two theoretical uncertainty scenarios (S2 and $\mathrm{S}^{\prime}$ ) [13] are given for comparison.

FCC-ee/eh/hh

| kappa-0 | HL-LHC | LHeC | $\left\lvert\, \begin{array}{cc} \mathrm{HE}-\mathrm{LHC} \\ \mathrm{~S} 2 & \mathrm{~S} 2^{\prime} \end{array}\right.$ | $250$ | $\begin{gathered} \text { ILC } \\ 500 \end{gathered}$ | $1000$ | 380 | $\begin{gathered} \text { CLIC } \\ 15000 \end{gathered}$ | $3000$ | CEPC | $\left\lvert\, \begin{array}{cc} \text { FCC-ee } \\ 240 \quad 365 \end{array}\right.$ | FCC-ee/eh/hh |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\kappa_{W}$ [\%] | 1.7 | 0.75 | 1.40 .98 | 1.8 | 0.29 | 0.24 | 0.86 | 0.16 | 0.11 | 1.3 | 1.30 .43 | 0.14 |
| $\kappa_{Z}[\%]$ | 1.5 | 1.2 | 1.30 .9 | 0.29 | 0.23 | 0.22 | 0.5 | 0.26 | 0.23 | 0.14 | 0.200 .17 | 0.12 |
| $\kappa_{g}$ [\%] | 2.3 | 3.6 | 1.911 .2 | 2.3 | 0.97 | 0.66 | 2.5 | 1.3 | 0.9 | 1.5 | 1.71 .0 | 0.49 |
| $\kappa_{\gamma}[\%]$ | 1.9 | 7.6 | $\begin{array}{ll}1.6 & 1.2\end{array}$ | 6.7 | 3.4 | 1.9 | 98* | 5.0 | 2.2 | 3.7 | 4.73 .9 | 0.29 |
| $\kappa_{Z \gamma}[\%]$ | 10. | - | 5.733 .8 | 99^ | 86* | 85* | 120* | 15 | 6.9 | 8.2 | 81* 75* | 0.69 |
| $\kappa_{c}[\%]$ | - | 4.1 | - - | 2.5 | 1.3 | 0.9 | 4.3 | 1.8 | 1.4 | 2.2 | 1.81 .3 | 0.95 |
| $\kappa_{t}$ [\%] | 3.3 | - | $\begin{array}{ll}2.8 & 1.7\end{array}$ |  | 6.9 | 1.6 | - | - | 2.7 | - | - - | 1.0 |
| $\kappa_{b}[\%]$ | 3.6 | 2.1 | $3.2 \begin{array}{ll}3.3\end{array}$ | 1.8 | 0.58 | 0.48 | 1.9 | 0.46 | 0.37 | 1.2 | $\begin{array}{ll}1.3 & 0.67\end{array}$ | 0.43 |
| $\kappa_{\mu}$ [\%] | 4.6 | - | $\begin{array}{ll}2.5 & 1.7\end{array}$ | 15 | 9.4 | 6.2 | 320* | 13 | 5.8 | 8.9 | 1088.9 | 0.41 |
| $\kappa_{\tau}[\%]$ | 1.9 | 3.3 | 1.51 .1 | 1.9 | 0.70 | 0.57 | 3.0 | 1.3 | 0.88 | 1.3 | 1.40 .73 | 0.44 |

... gives the complete picture $\rightarrow$ check consistency at sub-percent level of different Higgs production \& background compositions!

## Higgs @ HL-LHC, ee and FCC-eh

within kappa framework; statistical errors only
... to explore the synergy fully
FCC-eh

| Collider | HL-LHC | ILC $_{250}$ | CLIC $_{380}$ | FCC-ee |  |  | FCC-eh |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Luminosity $\left(\mathrm{ab}^{-1}\right)$ | 3 | 2 | 0.5 | $5 @$ <br> 240 GeV | $+1.5 @$ <br> 365 GeV | + <br> HL-LHC | 2 |
| Years |  |  |  | 7 | 3 | +4 | - |
| $\delta \Gamma_{\mathrm{H}} / \Gamma_{\mathrm{H}}(\%)$ | SM | 3.8 | 6.3 | 2.7 | $\mathbf{1 . 3}$ | 1.1 | SM |
| $\delta g_{\mathrm{HZZ}} / g_{\mathrm{HZZ}}(\%)$ | 1.3 | 0.35 | 0.80 | 0.2 | $\mathbf{0 . 1 7}$ | 0.16 | 0.43 |
| $\delta g_{\mathrm{HWW}} / g_{\mathrm{HWW}}(\%)$ | 1.4 | 1.7 | 1.3 | 1.3 | $\mathbf{0 . 4 3}$ | 0.40 | 0.26 |
| $\delta g_{\mathrm{Hbb}} / g_{\mathrm{Hbb}}(\%)$ | 2.9 | 1.8 | 2.8 | 1.3 | $\mathbf{0 . 6 1}$ | 0.55 | 0.74 |
| $\delta g_{\mathrm{Hcc}} / g_{\mathrm{Hcc}}(\%)$ | SM | 2.3 | 6.8 | 1.7 | $\mathbf{1 . 2 1}$ | 1.18 | 1.35 |
| $\delta g_{\mathrm{Hgg}} / g_{\mathrm{Hgg}}(\%)$ | 1.8 | 2.2 | 3.8 | 1.6 | $\mathbf{1 . 0 1}$ | 0.83 | 1.17 |
| $\delta g_{\mathrm{H} \mathrm{\tau} \mathrm{\tau}} / g_{\mathrm{H} \mathrm{\tau} \mathrm{\tau}}(\%)$ | 1.7 | 1.9 | 4.2 | 1.4 | $\mathbf{0 . 7 4}$ | 0.64 | 1.10 |
| $\delta g_{\mathrm{H} \mu \mu} / g_{\mathrm{H} \mu \mu}(\%)$ | 4.4 | 13 | n.a. | 10.1 | $\mathbf{9 . 0}$ | 3.9 | n.a. |
| $\delta g_{\mathrm{H} \mathrm{\gamma} \mathrm{\gamma}} / g_{\mathrm{H} \mathrm{\gamma} \mathrm{\gamma}}(\%)$ | 1.6 | 6.4 | n.a. | 4.8 | $\mathbf{3 . 9}$ | 1.1 | 2.3 |
| $\delta g_{\mathrm{Htt}} / g_{\mathrm{Htt}}(\%)$ | 2.5 | - | - | - | - | 2.4 | tth |
| BR EXO | 1.7 |  |  |  |  |  |  |

$\rightarrow$ Combine the complementary measurements for best physics outcome!
$\rightarrow$ FCC-hh will be the machine to pin down HH and all rare decays!

## Analysis Framework and Detector*

## Event generation

- SM or BSM production
- CC \& NC DIS background by MadGraph5/MadEvent
- Fragmentation
- Hadronization
by PYTHIA (modified for ep)**


## Fast detector simulation <br> by Delphes <br> $\rightarrow$ test of LHeC detector

```
S/B analysis }->\mathrm{ cuts or BDT
```

- Calculate cross section with tree-level Feynman diagrams (any UFO) using pT of scattered quark as scale (CDR ŝ ) for ep processes with MadGraph5 ; parton-level x-check CompHep
- Fragmentation \& hadronisation uses ep-customised Pythia.


## - Delphes 'detector'

$\rightarrow$ displaced vertices and signed impact parameter distributions $\rightarrow$ studied for LHeC and FCC-eh SM Higgs; and for extrapolations [PGS for CDR and until 2014]

- 'Standard' GPD LHC-style detectors used and further studied based on optimising Higgs measurements, i.e. vertex resolution a la ATLAS IBL, excellent hadronic and elmag resolutions using 'best' state-of-the art detector technologies (no R\&D 'needed')
- Analysis requirements fed back to ep detector design


## ... and Consistency Checks of EW Theory

$\rightarrow$ similar tests possible using various cms energy CLIC machines, see e.g. [arXiv:1608.07538], however, in ep, we could perform them with one machine

$$
\frac{\sigma_{W W \rightarrow H \rightarrow i i}}{\sigma_{Z Z \rightarrow H \rightarrow i i}}=\frac{\kappa_{W}^{2}}{\kappa_{Z}^{2}}
$$

$$
\frac{\kappa_{W}}{\kappa_{Z}}=\cos ^{2} \theta_{W}=1-\sin ^{2} \theta_{W}
$$

$\rightarrow$ Dominated by $\mathrm{H} \rightarrow$ bb decay channel precision
> Very interesting consistency check of EW theory

$>$ Values for $\cos ^{2} \Theta$ given here are the PDG value as central value 0.777 and uncertainty from ep Higgs measurement prospects

| LHeC: | $\pm \mathbf{0 . 0 1 0}$ |
| :--- | :--- |
| HE-LHeC | $\pm 0.006$ |

FCC-eh $\pm 0.004$
$\rightarrow$ Another nice test: How does the Higgs couple to $\mathbf{3}^{\text {rd }}$ and $\mathbf{2}^{\text {nd }}$ generation quark?
$b$ is down-type and $c$ is up-type

$$
\frac{\sigma_{W W \rightarrow H \rightarrow c \bar{c}}}{\sigma_{W W \rightarrow H \rightarrow b \bar{b}}}=\frac{\kappa_{c}^{2}}{\kappa_{b}^{2}}
$$

## Higgs in ee vs ep

ee Dominant Higgs productions:

ee


## Top Yukawa Coupling @ LHeC

B.Coleppa, M.Kumar, S.Kumar, B.Mellado, PLB770 (2017) 335
$\mathrm{SM}: \quad \mathcal{L}_{\text {Yukawa }}=-\frac{m_{t}}{v} \bar{t} t h-\frac{m_{b}}{v} \bar{b} b h$,

BSM: Introduce phases of top-Higgs and bottom-Higgs couplings

$$
\begin{aligned}
\mathcal{L}= & -\frac{m_{t}}{v} \bar{t}\left[\kappa \cos \zeta_{t}+i \gamma_{5} \sin \zeta_{t}\right] t h \\
& -\frac{m_{b}}{v} \bar{b}\left[\cos \zeta_{b}+i \gamma_{5} \sin \zeta_{b}\right] b h .
\end{aligned}
$$

Enhancement of the DIS cross-section as a function of phase




Observe/Exclude non-zero phase to better than $4 \sigma$
$\rightarrow$ With Zero Phase: Measure ttH coupling with $17 \%$ accuracy at LHeC $\rightarrow$ extrapolation to FCC-eh: ttH to $1.7 \%$

## Branching for invisible Higgs

Satoshi Kawaguchi, Masahiro Kuze Tokyo Tech
Values given in case of $2 \sigma$ and $\mathrm{L}=1 \mathrm{ab}^{-1}$

| Delphes <br> detectors | LHeC [HE-LHeC] <br> $1.3 \quad[1.8 \mathrm{TeV}]$ | FCC-eh <br> 3.5 TeV |
| :--- | :--- | :--- |
| LHC-style | $4.7 \%[3.2 \%]$ | $1.9 \%$ |
| First 'ep-style' | $5.7 \%$ | $2.6 \%$ |
| +BDT Optimisation | $5.5 \%\left(4.5 \%^{*}\right)$ | $1.7 \%\left(2.1 \%^{*}\right)$ |

LHeC parton-level, cut based <6\% [Y.-L.Tang et al. arXiv: 1508.01095]


PORTAL to Dark Matter ?
$\checkmark$ Uses ZZH fusion process to estimate prospects of Higgs to invisible decay using standard cut/BDT analysis techniques
$\checkmark$ Full MG5+Delphes analyses, done for 3 c.m.s. energies $\rightarrow$ very encouraging for a measurement of the branching of Higgs to invisible in ep down to $5 \%$ [1.2\%] for 1 [2] ab ${ }^{-1}$ for LHeC [FCC-eh]
$\checkmark \quad$ A lot of checks done: We also checked LHeC $\leftarrow \rightarrow$ FCC-he scaling with the corresponding cross sections (* results in table) : Downscaling FCC-he simulation results to LHeC would give $4.5 \%$, while up-scaling of LHeC simulation to FCC-he would result in $2.1 \% \rightarrow$ all well within uncertainties of projections of $\sim 25 \%$
$\rightarrow$ further detector and analysis details have certainly an impact on results $\rightarrow$ enhance potential further

## Double Higgs Production

Encouraging FCC-eh cut-based study; full Delphes-detector simulation; conservative HFL tagging


$1 \sigma$ for SM hhh for $\mathrm{E}_{\mathrm{e}}$ 60 (120) GeV and 10ab-1 $g_{h h h}^{(1)}=1.00_{-0.17(0.12)}^{+0.24(0.14)}$

Probing anomalous couplings within Higgs EFT: limits are obtained by scanning one of the non-BSM coupling while keeping other couplings to their SM values.

Here $g_{(\cdots)}^{(i)}, i=1,2$, and $\tilde{g}_{(\cdots)}$ are real coefficients corresponding to the CP-even and CP-odd couplings respectively, of the $h h h, h W W$ and $h h W W$ anomalous vertices.

