

Search for rare Higgs boson decays with ATLAS.

Artem Basalaev (DESY) on behalf of the ATLAS Collaboration

26 July 2021 EPS-HEP2021 conference

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

DESY.

Motivation

- Higgs boson, discovered in 2012, is now observed in multiple channels: H→bb, H→WW, H→ττ, H→ZZ, H→γγ
- With more data from Run 2 it is becoming possible to explore rare decays, such as H→µµ (see talks: <u>ATLAS</u>, <u>CMS</u>) and H→IIγ (topic of this talk)
- Paving the way for
 - Future measurements, e.g. <u>CP violation in</u> <u>SM</u> with $H \rightarrow II\gamma$ (three-body final state)
 - Searches for <u>BSM couplings</u>
- $H \rightarrow II\gamma$ (I=e,µ) decays explored in ATLAS:
 - $H \rightarrow Z\gamma \rightarrow II\gamma$, with m_{\parallel} near Z peak <u>Phys. Lett. B 809 (2020) 135754</u>
 - **Low-m_{II} H** \rightarrow **II** γ : predominantly through H $\rightarrow\gamma^*\gamma$ \rightarrow II γ , with m_{II}<30 GeV <u>Phys. Lett. B 819 (2021) 136412</u>
- Presenting results with full Run 2 dataset: 139 fb⁻¹ at √s=13 TeV

$H \rightarrow Z\gamma \rightarrow Il\gamma search$

$H \rightarrow Z\gamma \rightarrow II\gamma$: event selection

- Select events with well-reconstructed e^+e^- or $\mu^+\mu^$ and a γ
- For Z boson candidates (50<m_{II}<101 GeV) apply a kinematic m_{II} fit using the Z Breit-Wigner lineshape as a constraint
 - For m_{uu} additionally correct for collinear FSR
 - Improves m_z resolution 14% for ee and 10% for μμ
- H candidate: Z candidate + highest-p_T γ in the event, 105<m_{Zy}<160 GeV
- **BDT-based categorization** of VBF-like events + separation of high- $p_T^{\gamma}/m_{\mu\gamma}$ and high- $p_{Tt}^{Z\gamma}$ events for best sensitivity (6 categories total)

$H \rightarrow Z\gamma \rightarrow II\gamma$: signal and background model

Fit m_{llγ} with Signal+Background functions

Signal: for all categories fit with Double-Sided Crystal
 Ball function (gaussian core, power law tails)

- Background:
 - Construct background template:
 - SM IIγ backgrounds: from MC: Zγ and Zγjj
 - Z+jets: from data
 - Choose background functions (per category)
 - minimizing bias:
 - fit S+B model with background template
 - any signal from the fit is *spurious* = bias
 - and with fewest DOF

Category	Function Type
VBF-enriched	Second-order power function
High relative $p_{\rm T}$	Second-order exponential polynomial
ee high p_{Tt}	Second-order Bernstein polynomial
$ee \text{ low } p_{\mathrm{T}t}$	Second-order exponential polynomial
$\mu\mu$ high $p_{\mathrm{T}t}$	Third-order Bernstein polynomial
$\mu\mu$ low $p_{\mathrm{T}t}$	Third-order Bernstein polynomial

Templates for function choice, compared to data

H→Zγ→IIγ: results

- The result is dominated by statistical uncertainty
- Very low branching ratio and high irreducible background

Main sources of systematic uncertainties:

- Background function bias (spurious signal)
- BR (theory)
- Missing higher-order QCD
- Observed significance: 2.2σ
 - Expected: 1.2σ
- Observed 95% CL upper limit on the $\sigma(pp \rightarrow H) \cdot B(H \rightarrow Z\gamma)$: **3.6** times SM
 - Expected, assuming SM Higgs boson:
 2.6 times SM
- Best-fit signal strength (times SM):

 $2.0\pm0.9 \text{ (stat.)}^{+0.4}_{-0.3}(\text{syst}) = 2.0^{+1.0}_{-0.9}$

Phys. Lett. B 809 (2020) 135754

Low- m_{\parallel} H \rightarrow Ily search.

Low-m_{II} H \rightarrow **II** γ search: experimental challenge

Unique challenge: low invariant mass of the lepton pair leptons are often collimated

- EM calorimeter deposits from 2 electrons often merge
 - Special electron trigger with relaxed EM shower shape cuts
 - Dedicated merged electrons identification algorithm
 - TMVA-based, using shower shapes, TRT ID, kinematics of cluster & tracks
 - Efficiency scale factors & energy calibration modelled using early converted photons
- Isolation correction for signal leptons: removing contribution to each other's isolation cones

Resolved 2e

Merged 2e

Low-m_{II} $H \rightarrow II\gamma$ search: analysis strategy

Similar to Zy, main differences:

- For dilepton candidates:
 - mll<30 GeV cut to separate from Zy Ο
 - eey Resolved: electrons identified with standard reco Ο
 - eev Merged: electrons identified using custom ID Ο
- Cut-based categorization: VBF-like events, high- $\mathbf{p}_{\tau t}^{\gamma^* \gamma}$ events, and the rest in $\mu\mu\gamma$, ee γ Resolved, ee γ Merged (9 categories total)
- Background:
 - Construct background template: Ο
 - SM Ily backgrounds: generator-level Ily MC (with reco corrections)
 - **y+jets**, **II+jet**: shape & normalization from data
 - Background functions minimizing bias: 0

Category	Function Type
$\mu\mu$ VBF-enriched	Power function
ee Resolved VBF-enriched	Exponential function
ee Merged VBF-enriched	Power function
$\mu\mu$ high $p_{\mathrm{T}t}$	Power function
<i>ee</i> Resolved high p_{Tt}	Power function
ee Merged high p_{Tt}	Power function
$\mu\mu \log p_{\mathrm{T}t}$	Second-order exponential polynomial
ee Resolved low p_{Tt}	Power function
ee Merged low p_{Tt}	Second-order exponential polynomial

ATLAS Simulation

GeV 0.18

Signal model

ee merged high-p

135

DESY. Search for rare H decays with ATLAS | EPS-HEP2021 | Artem Basalaev, 26 July 2021

Low-m_{II} H \rightarrow **II** γ search: results

Search is still **statistically limited**: systematic uncertainty is only 35% of the statistical uncertainty.

Uncertainty source	μ	$\sigma \times \mathcal{B}$
Spurious Signal	6	5.1
$\mathcal{B}(H \to \ell \ell \gamma)$	5.8	_
QCD scale	4.7	1.1
ℓ, γ , jets	4	.0

- Deserved significance: **3.2***σ*
 - Expected: 2.1σ
- Best-fit signal strength (times SM):
 1.5±0.5(stat.)^{+0.2}_{-0.1}(syst.) = **1.5±0.5**
- Cross-section times BR for $m_{\parallel} < 30 \text{ GeV}$: 8.7±2.7(stat.)^{+0.6} (syst.) = 8.7^{+2.8} fb

First evidence for the decay of the Higgs boson into a pair of leptons and a photon

Summary & outlook

- With data from Run 2 it is becoming possible to explore rare Higgs boson decays, such as $H \rightarrow II\gamma$
- This process is probed in two searches in ATLAS:
 - \circ H \rightarrow Z γ \rightarrow II γ : the result is still very statistically limited
 - Low-mll $H \rightarrow ll\gamma$: first evidence of $H \rightarrow ll\gamma$ decay @ 3.2 σ !
 - Data consistent with SM
- Good potential for Run3 and beyond:
 - More precise measurement of Higgs boson properties, including CP
 - Searches for **BSM couplings**

Backup.

Low-m_{II} H→IIy search: additional results (I) Data (without reweighting) and post-fit S+B model

Sources of systematic uncertainties

Uncertainty source	μ	$\sigma \times \mathcal{B}$
Spurious Signal		6.1
$\mathcal{B}(H \to \ell \ell \gamma)$	5.8	_
QCD scale	4.7	1.1
ℓ, γ , jets		4.0
PDF	2.3	0.9
Luminosity		1.7
Pile-up		1.7
Minor prod. modes		0.8
$H \rightarrow \gamma \gamma$ background		0.7
Parton Shower		0.3
Total systematic	11	7.9
Statistical		31
Total	33	32

DESY. Search for rare H decays with ATLAS | EPS-HEP2021 | Artem Basalaev, 26 July 2021

Low-m_{II} H \rightarrow **IIy search: additional results (II)**

Category	Events	S_{90}	B_{90}^N	$B_{H \to \gamma \gamma}$	f_{90} [%]	Z_{90}
ee resolved VBF-enriched	10	0.4	1.6	0.009	20	0.3
ee merged VBF-enriched	15	0.8	2.0	0.07	27	0.5
$\mu\mu$ VBF-enriched	33	1.3	5.9		18	0.5
ee resolved high- $p_{\mathrm{T}t}$	86	1.1	12	0.02	9	0.3
$ee \text{ merged high-} p_{\mathrm{T}t}$	162	2.5	18	0.2	12	0.6
$\mu\mu$ high- $p_{\mathrm{T}t}$	210	4.0	34		11	0.7
ee resolved low- $p_{\mathrm{T}t}$	3713	22	729	0.5	2.9	0.8
$ee \text{ merged low-} p_{\mathrm{T}t}$	5103	29	942	2	3.0	1.0
$\mu\mu \log p_{\mathrm{T}t}$	9813	61	1750		3.4	1.4

p_{T} "thrust":

In the plane transverse to the beam, projection of the $\mathbf{p}_{T}^{\gamma^{*}\gamma}$ perpendicular to $\mathbf{p}_{T}^{\gamma^{*}} - \mathbf{p}_{T}^{\gamma}$

highly correlated with $p_{T}^{\gamma^{*\gamma}}$ but with better experimental resolution

Backgrounds:

- After selection SM γ*γ dominates in all channels
- Estimated fake γ and leptons using using template fits (inverting ID and iso requirements)
- Fake γ consistent 10% across channels and categories
- Fake leptons:
 - resolved ee low- p_{Tt} : **30%**
 - \circ µµ low-p_{Tt}: 4%
 - merged ee low-p_{Tt}: 2%
 (other categories have large stat uncertainties)

- Candidate: electrons identified with standard ATLAS reconstruction [JINST 14 (2019) P12006] with multiple associated tracks
- Quality of candidates:
 - electrons: $p_T > 20 \text{ GeV}$, $|\eta| < 1.37$, $E_T(had)/E_T(EM) < 0.1$
 - $\circ~$ tracks: p_ > 0.5 GeV, |\eta|<2.5, 7 hits in Si detectors
 - 1 hit in innermost pixel layer, to suppress conv. photons
 - track pair: oppositely charged, p_T -dependent requirement on max $\Delta \phi$ at the IP
 - TMVA-based ID using shower shapes, TRT ID, track-to-calorimeter pointing variables
 - Efficiency ~50% (combined ID + iso) measured with radiative Z events

$H \rightarrow Z\gamma \rightarrow II\gamma$ search: additional results

Category	Events	S_{68}	B_{68}	w68 [GeV]	$S_{68}/B_{68} [10^{-2}]$	$S_{68}/\sqrt{S_{68}+B_{68}}$
VBF-enriched	194	2.7	18.7	3.7	14.3	0.58
High relative $p_{\rm T}$	2276	7.6	112.8	3.7	6.7	0.69
High $p_{\mathrm{T}t} \ ee$	5567	9.9	444.0	3.8	2.2	0.46
Low $p_{\mathrm{T}t} \ ee$	76679	34.5	6654.1	4.1	0.5	0.42
High $p_{Tt} \mu \mu$	6979	12.0	610.8	3.9	2.0	0.48
Low $p_{\mathrm{T}t} \ \mu\mu$	100876	43.5	8861.5	4.0	0.5	0.46
Inclusive	192 571	110.2	16701.9	4.0	0.7	0.85

Category	μ	Significance
VBF-enriched	$0.5^{+1.9}_{-1.7}\ (1.0^{+2.0}_{-1.6})$	0.3 (0.6)
High relative $p_{\rm T}$	$1.6^{+1.7}_{-1.6}(1.0^{+1.7}_{-1.6})$	1.0 (0.6)
High $p_{\mathrm{T}t} \ ee$	$4.7^{+3.0}_{-2.7}\ (1.0^{+2.7}_{-2.6})$	1.7 (0.4)
Low $p_{\mathrm{T}t} \ ee$	$3.9^{+2.8}_{-2.7} \ (1.0^{+2.7}_{-2.6})$	1.5 (0.4)
High $p_{\mathrm{T}t} \ \mu\mu$	$2.9^{+3.0}_{-2.8}\ (1.0^{+2.8}_{-2.7})$	1.0 (0.4)
Low $p_{\mathrm{T}t} \ \mu\mu$	$0.8^{+2.6}_{-2.6}(1.0^{+2.6}_{-2.5})$	0.3 (0.4)
Combined	$2.0^{+1.0}_{-0.9}\;(1.0^{+0.9}_{-0.9})$	2.2 (1.2)

Measuring CP with $H \rightarrow II\gamma$

 Can be done using forward-backward asymmetry of the decay [J. High Energy Phys. 61 (2013 2013)]:

$$\mathcal{A}_{\rm FB} = \frac{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \int_0^1 \frac{d\Gamma}{dq^2 d\cos\theta} d\cos\theta dq^2 - \int_{q_{\rm min}^2}^{q_{\rm max}^2} \int_{-1}^0 \frac{d\Gamma}{dq^2 d\cos\theta} d\cos\theta dq^2}{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \int_0^1 \frac{d\Gamma}{dq^2 d\cos\theta} d\cos\theta dq^2 + \int_{q_{\rm min}^2}^{q_{\rm max}^2} \int_{-1}^0 \frac{d\Gamma}{dq^2 d\cos\theta} d\cos\theta dq^2}$$

dilepton rest frame: "forward" and "backward" decays