Studies of the CP properties of the Higgs boson at the ATLAS experiment

William Leight, for the ATLAS Collaboration DESY
EPS-HEP2021
July 26, 2021

Outline

- Study of CP violation in VBF production using the $\tau \tau$ decay channel, Phys. Lett. B 805 (2020) 135426
- Study of CP violation in ttH production using the Y decay channel, Phys. Rev. Lett. 125 (2020) 061802
- Study of CP violation in ggH production using the WW decay channel, ATLAS-CONF-2020-055

CP Violation and Effective Field Theories

- Matter-antimatter imbalance is not explained by the SM
- Which only includes a small level of CP violation - CP-violating BSM physics must be out there

CP Violation and Effective Field Theories

- Matter-antimatter imbalance is not explained by the SM
- Which only includes a small level of CP violation -CP-violating BSM physics must be out there
- Haven't been able to directly detect it so far

CP Violation and Effective Field Theories

- Matter-antimatter imbalance is not explained by the SM
- Which only includes a small level of CP violation
- CP-violating BSM physics must be out there
- Haven't been able to directly detect it so far
- But we might be able to see its effects indirectly
- The couplings of the Higgs boson to other particles could be affected by physics at higher
 energies

CP Violation and Effective Field Theories

- Matter-antimatter imbalance is not explained by the SM
- Which only includes a small level of CP violation
- CP-violating BSM physics must be out there
- Haven't been able to directly detect it so far
- But we might be able to see its effects indirectly
- The couplings of the Higgs boson to other particles could be affected by physics at higher
 energies
- Parameterize new physics with an EFT model
- Higgs Characterization is the main one used for results shown here
- Allow for some admixture of a 0 - Higgs boson
- Include all possible interactions from gauge-invariant dimension-6 operators
- For each analysis, focus on the operators that effect the relevant vertex
- Assume SM holds for the rest

CP Violation and Effective Field Theories

- Matter-antimatter imbalance is not explained by the SM
- Which only includes a small level of CP violation
- CP-violating BSM physics must be out there
- Haven't been able to directly detect it so far
- But we might be able to see its effects indirectly
- The couplings of the Higgs boson to other particles could be affected by physics at higher
 energies
- Study of CP violation in VBF production using the $\tau \tau$ decay channel, Phys. Lett. B 805 (2020) 135426
- Study of CP violation in ttH production using the Y decay channel, Phys. Rev. Lett. 125 (2020) 061802
- Study of CP violation in ggH production using the WW decay channel, ATLAS-CONF-2020-055

CP in the HVV Vertex

 CPV described by
single* parameter \tilde{d}

$$
\mathcal{M}=\mathcal{M}_{\mathrm{SM}}+\tilde{d} \cdot \mathcal{M}_{\mathrm{CP}-\text { odd }}
$$

$$
O_{\mathrm{opt}}=\frac{2 \operatorname{Re}\left(\mathcal{M}_{\mathrm{SM}}^{*} \mathcal{M}_{\mathrm{CP}-\mathrm{odd}}\right)}{\left|\mathcal{M}_{\mathrm{SM}}\right|^{2}}
$$

CP-odd contribution

- Oopt combines information from 7 variables characterizing the final state
- <O Oopt>=0 if no CPV
- More sensitive than $\Delta \phi_{\mathrm{ij}}$
- $\tau \tau$ final state offers good S/B and reconstruction of the Higgs
- More details in talk of M. Mlynarikova

Analysis

- All four $\tau \tau$ channels are used (dileptonic SF and DF,semileptonic. all hadronic)
- VBF topology selected by requiring two widely separated jets with $\mathrm{m}_{\mathrm{j} j}>300 \mathrm{GeV}$
- BDT trained in each channel for further discrimination
- Score used to define a SR
- No dependence of Oopt on the BDT
- CRs used to constrain normalization of
- Z $\rightarrow \tau \tau$ (all channels)
- Z \rightarrow II (dileptonic SF)
- top backgrounds (dileptonic)
- Misidentified τ estimated using data-driven methods

Results

- Fit to $\mathrm{O}_{\text {opt }}$ distributions performed simultaneously
- Ditau mass in the low-BDT CR, event yields for others
- Signal normalization is allowed to float
- Also Z $\rightarrow \tau \tau$ or II and top backgrounds

- Fraction of $\mathrm{H} \rightarrow \mathrm{WW}$ decays fixed to SM value
- Combined $<O_{\text {opt }}>=-0.19 \pm 0.37$
- $68 \% \mathrm{CL}$ for d is [-0.090,0.035]

CP in the Top Yukawa

$$
\mathcal{L}=-\frac{m_{t}}{v}\left\{\bar{\psi}_{t} \kappa_{t}\left[\cos (\alpha)+\mathrm{i} \sin (\alpha) \gamma_{5}\right] \psi_{t}\right\} H
$$

- New physics in HVV suppressed by $1 / \Lambda^{2}$
- Assuming Higgs is partly 0^{-}, not the case for CP-odd contribution to top Yukawa
- Would strongly affect ttH and especially tH yields
- tH suppressed in SM by interference

Analysis

- $\gamma \gamma$ final state: high yield, clean, good mass resolution
- For more details on Yy analysis, see talk by E. Rossi
- For more details on ttH analyses, see talk by H. Yang
- Two BDTs for event categorization
- Trained separately in hadronic and leptonic top-quark decays
- One for discriminating against background
- One for discriminating CP-even from CP-odd

Analysis

Analysis

- Final categorization in 2d BDT plane
- Categories and boundaries chosen to optimize ttH significance and CP-even vs. CP-

Results

- Simultaneous fit in all categories

Results

- Simultaneous fit in all categories

- ttH and tH yields parameterized in terms of α and κ_{t}

Results

- Simultaneous fit in all categories
- ttH and tH yields parameterized in terms of α and ${ }_{\kappa t}$
- ggF and $\mathrm{H} \rightarrow \gamma \gamma$ coupling modifiers constrained by other analyses
-2d fit of $\kappa_{t} \sin (\alpha)$ vs. $\kappa_{t} \cos (\alpha)$

$|\alpha|>43^{\circ}$ excluded at 95\% CL

CP in the ggH Vertex

$$
\mathcal{L}_{0}^{\text {loop }}=-\frac{1}{4}\left(\kappa_{H g g} g_{H g g} G_{\mu \nu}^{a} G^{a, \mu \nu}+\kappa_{A g g} g_{H g g} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}\right) H
$$

- In $\mathrm{m}_{\text {top }} \rightarrow \infty$ limit, effective ggH vertex inherits the CP structure of the Higgs-top interaction
- Look for CP violation in ggH+2jet production

Analysis

- Train a BDT to distinguish between ggF+2j signal and top, diboson, and $Z(\tau \tau)+j e t s$ backgrounds
- Input observables and BDT discriminant show no CP dependence
- Define categories based on $\Delta \eta_{\mathrm{ij}}$ and BDT to maximize sensitivity
\rightarrow CP discrimination increases with Δn_{ij}

Analysis

- Train a BDT to distinguish between ggF+2j signal and top, diboson, and $Z(\tau \tau)+$ jets backgrounds
- Input observables and BDT discriminant show no CP dependence
- Define categories based on $\Delta \eta_{\mathrm{jj}}$ and BDT to maximize sensitivity

Results

- Parameter morphing used to interpolate between α values
- Perform fits using shape and rate, or only shape information
- Rate could be affected by other BSM effects
- Shape-only not sensitive with this dataset
- Use both for simultaneous scan of CP-even and CP-odd parameters
- Shape and rate gives a best-fit value of:
$-\tan (\alpha)=0 \pm 0.4$ (stat) ± 0.4 (syst)

Conclusion

- Higgs couplings provide a potentially fruitful area of search for BSM CP-violating physics
- With EFT's as the essential theoretical model
- Higgs couplings to V and top studied with different techniques
- No sign of CP violation yet
- All results statistically dominated
- Not all yet using the full Run-2 dataset
- More results using additional channels and approaches are coming, stay tuned!

Backup

VBF H $\rightarrow \tau \tau$ Event Selection

Channel	$\tau_{\text {lep }} \tau_{\text {lep }} \mathrm{SF}$	$\tau_{\text {lep }} \tau_{\text {had }}$	$\tau_{\text {had }} \tau_{\text {had }}$
Preselection	Two isolated τ-lepton decay candid $$	with opposite el $\begin{gathered} p_{\tau_{\text {had }}}^{\tau_{\text {lep }}}>30 \mathrm{GeV} \\ p_{\mathrm{T}}>21^{*} \mathrm{GeV} \\ m_{\mathrm{T}}<70 \mathrm{GeV} \end{gathered}$	$\begin{gathered} \text { c charge } \\ p_{\mathrm{T}}^{\tau_{1}}>40 \mathrm{GeV} \\ p_{\mathrm{T}}^{\tau_{2}}>30 \mathrm{GeV} \\ 0.8<\Delta R_{\tau \tau}<2.5 \\ \left\|\Delta \eta_{\tau \tau}\right\|<1.5 \\ E_{\mathrm{T}}^{\text {miss }}>20 \mathrm{GeV} \end{gathered}$
VBF topology	$\begin{aligned} & N_{\text {jets }} \geq 2, p_{\mathrm{T}}^{j_{2}}>30 \mathrm{GeV}, m_{j j}>300 \mathrm{GeV},\left\|\Delta \eta_{j j}\right\|>3 \\ & \quad p_{\mathrm{T}}^{j_{1}}>40 \mathrm{GeV} \\ & \left\|p_{\mathrm{T}}^{j_{1}}>70 \mathrm{GeV},\left\|\eta_{j_{1}}\right\|<3.2\right. \end{aligned}$		
BDT input variables		$\begin{gathered} \left(\tau_{1}\right), C_{j j}\left(\tau_{2}\right), p_{\mathrm{T}}^{\mathrm{tot}} \\ m_{\tau \tau}^{\mathrm{vis}},\left\|\Delta \eta_{\tau \tau}\right\| \end{gathered}$	$\begin{aligned} & \mathrm{ss}) / \sqrt{2} \\ & p_{\mathrm{T}}^{\tau \tau E_{\mathrm{T}}^{\text {miss }}},\left\|\Delta \eta_{\tau \tau}\right\| \end{aligned}$
Signal region	$\mathrm{BDT}_{\text {score }}>0.78$	$\mathrm{BDT}_{\text {score }}>0.86$	$\mathrm{BDT}_{\text {score }}>0.87$

VBF H $\rightarrow \tau \tau$ CRs

VBF $\mathrm{H} \rightarrow \tau \tau$ CRs

Optimal Observable PS-HEP2021, Hamburg, July 262021

$\mathrm{H} \rightarrow \tau \tau \mathrm{SRs}$

Optimal Observable

VBF H $\rightarrow \tau \tau$ Systematics

ttH Leptonic Channel

ttH Signal Parameterizations

ttH Fit Results

ggF+2j HWW Systematics

Source	$\Delta\left(\kappa_{A g g} / \kappa_{H g g}\right)$
Total data statistical uncertainty	0.4
SR statistical uncertainty	0.33
CR statistical uncertainty	0.10
MC statistical uncertainty	0.14
Total systematic uncertainty	0.28
Theoretical uncertainty	0.23
Top quark bkg.	0.15
ggF signal	0.14
$W Z, Z Z, W \gamma, Z \gamma$ bkg.	0.06
$W W$ bkg.	0.06
Z / γ^{*} bkg.	0.016
VBF bkg.	0.015
Experimental uncertainty	0.21
b-tagging	0.16
Modelling of pile-up	0.10
Jets	0.07
Misidentified leptons	0.04
Luminosity	0.034
Total	0.5

ggF+2j HWW Shape-Only Scan

