

Higgs boson coupling to second generation fermions with the ATLAS detector

EPS-HEP conference, 26.07.21 Marko Stamenkovic (Nikhef) on behalf of the ATLAS collaboration

Motivation: Higgs to second generation?

Higgs boson:

- Discovered in 2012
- Interacts proportional particles' masses
 - W and Z bosons
 - Charged fermions

BEH mechanism: free parameters

- Higgs mass + vacuum expectation value
- •9 Yukawa couplings for fermions

\rightarrow Needs to be measured experimentally! $\frac{9}{2}$

Standard Model of Elementary Particles

Motivation: Higgs to second generation?

Higgs boson:

- Discovered in 2012
- Interacts proportional particles masses
 - For W and Z bosons
 - Charged fermions

Higgs boson interactions: observed so far

- Interaction with gauge bosons
- Interaction with 3rd generation
- \rightarrow In agreement with Standard Model!

Standard Model of Elementary Particles

Motivation: Higgs to second generation?

Higgs boson:

- Discovered in 2012
- Interacts proportional particles masses
 - For W and Z bosons
 - Charged fermions

1st and 2nd generation:

- No experimental observation
- Any deviations = new physics

Standard Model of Elementary Particles

Motivation: Higgs to second generation? **Standard Model of Elementary Particles**

(fermions)

Next most promising measurements: Higgs coupling to muons and charm quarks! →Probes of Higgs coupling to 2nd generation with ATLAS

M. Stamenkovic, EPS-HEP conference, 26.07.21

Direct

Higgs coupling to second generation:

- BR(H \rightarrow µµ) ~ 0.02% and BR(H \rightarrow cc) ~ 3%
- Direct: access to $H \rightarrow \mu \mu$ and $H \rightarrow cc$
- Indirect: sensitive to Higgs coupling to charm quarks in virtual loop contributions
 - Use precise $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*$

M. Stamenkovic, EPS-HEP conference, 26.07.21

Run: 281411 Event: 312608026 2015-10-11 18:40:58 CEST

|

- $H \rightarrow \mu \mu$: direct probe of Higgs coupling to second generation • Challenge: low branching ratio $BR(H \rightarrow \mu\mu) \sim 0.02\%$
 - Good mass resolution $\sigma_m/m(\mu\mu) \sim 2\%$ (for comparison $\sigma_m/m(qq) \sim 10-15\%$)

M. Stamenkovic, EPS-HEP conference, 26.07.21

• Dominant background $Z/\gamma^* \rightarrow \mu\mu$: searching for peak in falling background spectrum

Analysis strategy: $H \rightarrow \mu \mu$

Sensitivity optimised with BDT categorisation

Signal production mode:

- ttH, VH, VBF, ggF
- Similar sensitive across all categories
- Most sensitive categories: VBF and ggF

Signal modelling: double-sided crystal ball

Background modelling: empirical function

→ Complex and challenging analysis

Phys. Lett. B 812 (2021) 135980

Direct search for $H \rightarrow \mu \mu$:

- Signal strength fitted in $m(\mu\mu)$ in 20 regions: $\mu_{H\to\mu\mu} = 1.2 + 0.6$
- Result: **2.0\sigma observed** (1.7 σ expected)
- Interpretation: $\kappa_{\mu} = 1.1 + 0.3$
- → Approaching observation of Higgs coupling to second generation leptons

M. Stamenkovic, EPS-HEP conference, 26.07.21

Dominated by statistical uncertainty and muon momentum resolution

10

Run: 280862 Event: 53564866 2015-10-02 16:24:44 CEST

High precision achieved in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$

- Fit to invariant mass of Higgs Boson m(yy) and m(ZZ*)
- Inclusive and differential cross-section measurements
- Unfolding procedure to compare to any kind of theory predictions

M. Stamenkovic, EPS-HEP conference, 26.07.21

Eur. Phys. J. C 80 (2020) 942

and kinematics

Enhanced Higgs coupling to bottom / charm quarks:

- Affect $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ in loops
- Effect on the shape and normalisation of the $p_T(H)$ spectrum
- Sensitive to effects in differential measurements

N. Stamenkovic, EPS-HEP conference, 26.07.21

Indirect constraint on κ_c

Constraint on κ_c modifiers: sensitivity for $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ for shape-only

- Assumption $\kappa_t = 1$
- $H \rightarrow \gamma \gamma$: -19 < κ_c < 24 ($\kappa_b = 1$)
- $H \rightarrow ZZ^* \rightarrow 4!: -11.7 < \kappa_c < 10.5$
- \rightarrow Constraining power on κ_c

M. Stamenkovic, EPS-HEP conference, 26.07.21

Indirect const

traint on ĸь	and κ_{c}	<u>Eur. Ph</u> ATLAS	<u>iys. J. C 80 (202</u> -CONF-2019-029
erpretation	Η→γγ		$H \rightarrow ZZ^* \rightarrow$

shape-only	[-19, 24]	[-11.7, 10
shape and malisation	-	[-7.46, 9.2

- Assumption $\kappa_i = 1$ for other fermions and bosons and no BSM contributions to Higgs width

15

Run: 309892 Event: 4866214607 2016-07-16 06:20:19 CEST

Search for $H \rightarrow cc$: VH production mode

- 1-lepton: $W(I^{\pm}\nu)H(\rightarrow cc)$, $I=e,\mu$
- 2-lepton: Z(l+l-)H(→cc), l=e,μ

Higgs boson reconstructed from at least 2 jets in the events

M. Stamenkovic, EPS-HEP conference, 26.07.21

Flavour tag

b-tagger@70%

Flavour tagging: c-tag + b-tag veto

- Goal: identify c-jets and minimise contamination of b-jets and light-jets
- Optimisation of c-tagging WP for VH(cc) sensitivity
- Additional b-tag veto based on VH(bb) b-tagging strategy
 → Goal: achieve statistical independence with VH(bb) analysis

gging strategy	New	ATLAS-CONF-202
	Pe	rformance
		c-tagging efficiency
	c-jets	27%
	b-jets	8%
	iaht-iets	1.6%

ntamination of b-jets and light-jets H(cc) sensitivity bb) b-tagging strategy ence with VH(bb) analysis

1

Categorisation of events with 2 jets •VH(cc) analysis: use events with 1 c-tag and 2 c-tag

• VH(bb) analysis: use events with 2 b-tag

→ VH(cc) and VH(bb) statistically independent by construction

Stamenkovic, EPS-HEP conference, 26.07.21

Flavour tagging categorisation New ATLAS-CONF-2021-021

19

Signal region: example

New ATLAS-CONF-2021-021

Diboson fit results: validation of the analysis VZ(cc): 2.6o observed (2.2 expected) VW(cq): 3.8o observed (4.6 expected) \rightarrow First measurement of VZ(cc) and VW(cq) using c-tagging!

M. Stamenkovic, EPS-HEP conference, 26.07.21

Mass distributions

2 c-tag

21

Result for VH(cc):

- VH(cc) signal strength: -9 ± 10 (stat) ± 12 (syst)
 - Similar size statistical and systematic uncertainties
 - Dominant uncertainties: V+jets and top modelling
- Limit on signal strength: $\mu_{H\to cc}$ < 26 x SM@95% confidence level (< 31x SM expected) \rightarrow Best limit on VH(cc) up to this day!

M. Stamenkovic, EPS-HEP conference, 26.07.21

κ_{c} interpretations

- Only sensitive to κ_c if $\mu < 35$ due to Higgs width in parametrisation
- Direct constraint: κ_c < 8.5 @ 95% CL (<12.4 @ 95% CL expected)
- Similar sensitivities to κ_c between direct and indirect constraints → Complementary approaches

M. Stamenkovic, EPS-HEP conference, 26.07.21

μ VH(cc)

New ATLAS-CONF-2021-021

• Assume $\kappa_i = 1$ for other fermions and bosons and no BSM contributions to Higgs width

23

ATLAS: Higgs coupling to second generation

Direct measurement:

H→μμ:
 2.0σ excess observed
 κ_μ = 1.1 + 0.3

• H→cc:

- $\mu_{H\rightarrow cc}$ < 26 x SM @ 95% CL observed
- $|_{K_c}| < 8.5$
- VZ(cc) and VW(cq) measurements

Indirect measurement:

- H→γγ: -19 < _{Kc} < 23
- $H \rightarrow ZZ^* \rightarrow 4I: -11.7 < \kappa_c < 10.5$
- Additional Higgs width assumption:
 H→ZZ*→4l: -7.5 < K_c < 9.3

Great results with Run 2! Many reasons to get excited for Run 3!

A. Stamenkovic, EPS-HEP conference, 26.07.21

Back up

Hmumu back up

M. Stamenkovic, EPS-HEP conference, 26.07.21

Hmumu

Hcc backup

Event categorisation: SR

Channel	c-tag	Jets	pтV	= Total: 16 SRs
0-lepton		2 and 2 into	TV > 150 CaV	
1-lepton		z and 5 jers	prv > 150 Gev	
2 lantan	i ana z c-rag	2 and >2 into	pTV > 150 GeV	
Z-lepton		∠ and ∠3 jets	75 < pTV < 150 GeV	

Event categorisation:

- Flavour tagging: 1 and 2 c-tag (similar sensitivity)
- - 2-lepton only: 75 < pTV < 150 GeV

New ATLAS-CONF-2021-021

• Jet multiplicity: 2 and 3(or more) jets \rightarrow Exploit better resolution in 2 jets category • pTV category: $pTV > 150 \text{ GeV} \rightarrow \text{Exploit better S/B at high pT(Higgs)}$

Categorisation of events with 2 jets

- VH(cc) analysis: use events with 1 c-tag and 2 c-tag
- VH(bb) analysis: use events with 2 b-tag

→ VH(cc) and VH(bb) orthogonal by construction in events with 2 jets

. Stamenkovic, EPS-HEP conference, 26.07.21

Flavour tagging categorisation Events with 3 jets

Events with 3(+) jets

- VH(bb) analysis: Higgs boson reconstructed from any 2 b-tagged jets

Categorisation of events with 3(+) jets: overlap in 1 c-tag and 2 b-tag if 3rd jet b-tagged → To achieve orthogonality: apply b-tag veto on 3rd jet and more in the event!

M. Stamenkovic, EPS-HEP conference, 26.07.21

•VH(cc) analysis: Higgs boson reconstructed from 2 jets with highest pT in event • VH(bb) strategy tested in VH(cc) and less sensitive (-7% loss of significance)

Simulation samples

Process	ME generator	ME PDF	PS and hadronisation	Tune	Cross-section order
$qq \rightarrow VH$ $(H \rightarrow c\bar{c}/b\bar{b})$	Роwнед-Box v2 [47, 48] + GoSam [59] + MiNLO [60, 61]	NNPDF3.0NLO [49]	Рутніа 8.212 [<mark>50</mark>]	AZNLO [51]	NNLO(QCD) +NLO(EW) [52–58]
$\begin{array}{c} gg \rightarrow ZH \\ (H \rightarrow c \bar{c} / b \bar{b}) \end{array}$	Powheg-Box v2	NNPDF3.0NLO	Рутнія 8.212	AZNLO	NLO+NLL
tī	Powheg-Box v2 [62]	NNPDF3.0NLO	Рутнія 8.230	A14 [<mark>63</mark>]	NNLO +NNLL [<mark>64–70</mark>]
t/s-channel single top	Powheg-Box v2 [71, 72]	NNPDF3.0NLO	Рутніа 8.230	A14	NLO [73, 74]
Wt-channel single top	Роwнед-Box v2 [71, 72]	NNPDF3.0NLO	Рутніа 8.230	A14	Approx. NNLO [75, 76]
V+jets	Sherpa 2.2.1 [44-46]	NNPDF3.0NNLO [49]	Sherpa 2.2.1	Default	NNLO [77]
$qq \rightarrow VV$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO
$gg \rightarrow VV$	Sherpa 2.2.2	NNPDF3.0NNLO	Sherpa 2.2.2	Default	NLO

Nominal simulation samples:

- VH(cc) and VH(bb): PowhegPythia8
- V+jets: Sherpa 2.2
- ttbar and single top: PowhegPythia8
- VV: Sherpa 2.2

Same samples used for the VH(bb) analysis

M. Stamenkovic, EPS-HEP conference, 26.07.21

Event selection

Revisited event selection for VH(cc):

- $\Delta R(cc)$ selection optimised for VH(cc) sensitivity
- O-lepton: non-collisional background rejection

Jet energy corrections:

- Smaller improvement w.r.t VH(bb) due to less semileptonic decays
- Muon-in-jet correction applied in all channels
- Improved m(cc) resolution: 6%
- Tested KF correction in 2-lepton
 - Improved m(cc) resolution by 37%
 - Induced disagreement between direct and truth tagging \rightarrow Not used in the final analysis

	-
	Common Selections
Central jets Signal jet p _T c-jets b-jets Jets	≥ 2 ≥ 1 signal jet with $p_T > 45$ GeV 1 or 2 <i>c</i> -tagged signal jets No <i>b</i> -tagged non-signal jets 2,3 (0- and 1-lepton), 2, ≥ 3 (2-lepton)
p_{T}^{V} regions	75–150 GeV (2-lepton) > 150 GeV
Δ <i>R</i> (jet 1, jet 2)	$\begin{array}{ll} 75 < p_{\rm T}^V < 150 \; {\rm GeV} \colon \Delta R \leq 2.3 \\ 150 < p_{\rm T}^V < 250 \; {\rm GeV} \colon \Delta R \leq 1.6 & {\sf New fo} \\ p_{\rm T}^V > 250 \; {\rm GeV} \colon \Delta R \leq 1.2 \end{array}$
	0 Lepton
Trigger Leptons E ^{miss}	$E_{\rm T}^{\rm miss}$ 0 <i>loose</i> leptons > 150 GeV
p_T^{miss}	> 30 GeV New for
H_{T} min $ \Delta\phi(E_{T}^{miss}, jet) $ $ \Delta\phi(E_{T}^{miss}, H) $ $ \Delta\phi(jet1, jet2) $ $ \Delta\phi(E_{T}^{miss}, p_{T}^{miss}) $	> 120 GeV (2 jets), > 150 GeV (3 jets) > 20° (2 jets), > 30° (3 jets) > 120° < 140° < 90°
	1 Lepton
Trigger Leptons E_{T}^{miss} m_{T}^{W}	e sub-channel: single electron μ sub-channel: E_T^{miss} 1 <i>tight</i> lepton and no additional <i>loose</i> leptons > 30 GeV (e sub-channel) < 120 GeV
	2 Lepton
Trigger Leptons m _{ll}	single lepton 2 <i>loose</i> leptons Same flavour, opposite-charge for $\mu\mu$ 81 < m_{ll} < 101 GeV

Summary

Fit to data performed simultaneously on 16 SRs + 28 CRs

M. Stamenkovic, EPS-HEP conference, 26.07.21

y: SR	and CR		∆R _{cc} cuts	75 GeV p _{TV} 150 GeV < p _{TV} > 250 G	< 150 Ge p _{TV} < 250 eV	eV) GeV	ΔR_{c} ΔR_{c}
ut		ΔR _{cc} cut <	< ΔR _{cc}	< 2.5			
	Top CR	ΔR	_{cc} CR			Le	ge
ag 2jet		l tag 2jet	2ta	ng 2jet		Bi	inne
ag 3jet	I tag 3 jet	l tag 3jet	2ta	ng 3jet		Bi	nne
ag 2jet		l tag 2jet	2ta	ng 2jet		Or	1e-b
ng 3jet	I tag 3 jet	l tag 3jet	2ta	ng 3jet			
ag 2jet	I tag 2 jet	l tag 2jet	2ta	ag 2jet			
g 3+jet	I tag 3+jet	I tag 3+jet	2ta	g 3+jet			
ag 2jet	l tag 2 jet	l tag 2jet	2ta	ng 2jet		6 SRs	'D-
g 3+jet	I tag 3+jet	I tag 3+jet	2ta	g 3+jet	=	28 C 44 r	egi

Background modelling

Process	Nominal	Alternative
VH(cc), VH(bb)	Powheg+Pythia8	Powheg+Herwig7 QCD µ _R and µ _F scale variations
\/\/	Sherpa2.2.1 (qq)	Powheg+Pythia8
V V	Sherpa 2.2.2 (gg)	QCD µ _R and µ _F scale variations
Z+jets and W+jets	Sherpa2.2.1	MadGraph5+Pythia8 QCD µ _R and µ _F scale variations
		MadGraph5+aMC@NLO+Pythia8
ttbar + single top	Downhoat Duthia Q	Powheg+Herwig7
	rowneg+ryinido	ISR / FSR
Single top only		Diagram subtraction + removal

Difference between nominal and alternative MC generators taken as uncertainty: • Normalisation uncertainties: relative difference on total yield predictions • Applied to subdominant processes (i.e. Diboson, VH): phase space acceptance • Acceptance ratios: relative differences in predictions for categories

- pTV and Njet
- Channel extrapolations: different predictions per channel
- SR / CR extrapolation: different predictions per region

M. Stamenkovic, EPS-HEP conference, 26.07.21

• Flavour composition ratios: different flavour / processes predictions per categories • M(cc) Shape uncertainties: account for differences in binned m(cc) distribution prediction • In addition: theory uncertainties for cross-section and branching fraction for VH(cc)

Background modelling

Floating normalisations:

- Heavy flavour: Zhf and Whf
- Mixed flavour: Zmf and Wmf
- Light flavour: Zlf and Wlf
- top(b) and top(other) (0- and 1-lepton)
- ttbar (2-lepton)

Acceptance, flavour and channel ratios:

- pTV (2-lepton): high pTV / low pTV
- Njet: 3 jets / 2 jets for V+jets and 2 jets / 3 jets for ttbar
- Flavour composition:
- bb / cc, bl / cl , bc/ cl for W+jets and Z+jets
- $b\tau$ / cl, $c\tau$ / cl, $l\tau$ / l for W+jets
- Wt / ttbar for top(b)
- SR / top CR, high ΔR CR / SR

 Channel: 0-lepton / 1-lepton, 0-lepton / 2-lepton Shape uncertainties: on m(cc) for each bkg subcomponent Data driven: QCD multi-jets in 1-lepton

$VH(\rightarrow bb)$	
$WH(\rightarrow bb)$ normalisation	27%
$ZH(\rightarrow b\bar{b})$ normalisation	25%
Diboson	
WW/ZZ/WZ acceptance	10/5/12%
$p_{\rm T}^V$ acceptance	4%
N _{iet} acceptance	7 - 11%
7 i inte	
Z + Jets	Floating
Z+nf normalisation	Floating
Z+my normalisation	Floating
Z+ij normalisation	Floating
Z + bb to $Z + cc$ ratio	20%
Z + bl to $Z + cl$ ratio	18%
Z + bc to $Z + cl$ ratio	0%
$p_{\rm T}$ acceptance	1-8%
N _{jet} acceptance	10 - 37%
High ΔR CR to SR	12 - 37%
0- to 2-lepton ratio	4 – 5%
W+jets	
W+hf normalisation	Floating
W+mf normalisation	Floating
W+lf normalisation	Floating
W + bb to $W + cc$ ratio	4 - 10 %
W + bl to $W + cl$ ratio	31 – 32 %
W + bc to $W + cl$ ratio	31 – 33 %
$W \rightarrow \tau \nu(+c)$ to $W + cl$ ratio	11%
$W \rightarrow \tau v(+b)$ to $W + cl$ ratio	27%
$W \rightarrow \tau v(+l)$ to $W + l$ ratio	8%
N _{iet} acceptance	8 - 14%
High ΔR CR to SR	15 – 29%
$W \rightarrow \tau \nu$ SR to high ΔR CR ratio	5 - 18%
0- to 1-lepton ratio	1-6 %
Ton quark (0, and 1 lantan)	
top (h) normalisation	Floating
top(b) normalisation	Floating
top(other) normalisation	Floating
N _{jet} acceptance	/ - 9%
0- to 1-lepton ratio	4%
SR/top CR acceptance (<i>tt</i>)	9%
SR/top CR acceptance (Wt)	16%
wt / tt ratio	10%
Top quark (2-lepton)	
Normalisation	Floating
Multi-jet (1-lepton)	
Normalisation	20 - 100%

$$\mathcal{L}(\mu, \vec{\theta}, \vec{\gamma}) = \prod_{i \in \text{bins}} \text{Pois}(N_i | \mu s_i(\vec{\theta}) + \gamma_i b_i)$$
POI Poissonian likelihood

Binned profile likelihood fit on m(cc) distribution simultaneously in 16 SRs and 28 CRs

3 parameters of interest (POIs):

- $\mu_{VH(cc)}$: signal strength of VH(cc) signal
- $\mu_{VZ(cc)}$: signal strength of VZ(cc) diboson \rightarrow validation of 2 c-tag category • $\mu_{VW(cq)}$: signal strength of VW(cq) diboson \rightarrow validation of 1 c-tag category

Background: floating normalisations of main backgrounds

Nuisance parameters (NPs)

- Full set of detector systematics: trigger, jets, leptons, c/b-tagging, pile-up, luminosity
- Full set of modelling uncertainties
- MC stat. uncertainty

M. Stamenkovic, EPS-HEP conference, 26.07.21

Fit strategy

Breakdown of uncertainties

- Similar statistical and systematic uncertainties
- Dominant systematic uncertainties:
 - Background modelling: V+jets and ttbar
 - Simulation statistics
 - Truth flavour tagging (improvement) from using truth tagging still 10% better than direct tagging)
 - \rightarrow Possible improvements with more simulated events and updating to the latest MC generators

N. Stamenkovic, EPS-HEP conference, 26.07.21

Breakdown of uncertainties

Source of uncertainty		$\mu_{VH(c\tilde{c})}$	$\mu_{VW(cq)}$	$\mu_{VZ(c\bar{c})}$	
Total		15.3	0.24	0.48	
Statistical		10.0	0.11	0.32	
Systematics		11.5	0.21	0.36	
Statistical uncertainties	s				
Data statistics only		7.8	0.05	0.23	
Floating normalisation	s	5.1	0.09	0.22	
Theoretical and model	ling uncertainties				
$VH(\rightarrow c\bar{c})$		2.1	< 0.01	0.01	
Z+jets		7.0	0.05	0.17	
Top-quark		3.9	0.13	0.09	
W+jets		3.0	0.05	0.11	
Diboson		1.0	0.09	0.12	
$VH(\rightarrow bb)$		0.8	< 0.01	0.01	
Multi-Jet		1.0	0.03	0.02	
Simulation statistics		4.2	0.09	0.13	
Experimental uncertain	nties				
Jets		2.8	0.06	0.13	
Leptons		0.5	0.01	0.01	
E_{T}^{miss}		0.2	0.01	0.01	
Pile-up and luminosity		0.3	0.01	0.01	
	c-jets	1.6	0.05	0.16	
Flowour togging	<i>b</i> -jets	1.1	0.01	0.03	
Flavour tagging	light-jets	0.4	0.01	0.06	
	τ -jets	0.3	0.01	0.04	
	ΔR correction	3.3	0.03	0.10	
Truth-flavour tagging	Residual non-closure	1.7	0.03	0.10	

Tagging c-jets is challenging

M. Stamenkovic, LHCP Poster session, 10.06.21

• Lifetime and mass of c-hadrons in between b-hadron and light hadrons measured in detector • Use Machine Learning to distinguish signal = c-jets from background = b-jets and light-jets

Charm tagging calibrations

M. Stamenkovic, LHCP Poster session, 10.06.21

Charm tagging performance

A. Stamenkovic, LHCP Poster session, 10.06.21

41

Analysis strategy: how do I reconstruct my Higgs?

VHcc categorisation:

- 2 c-tag + b-veto
- 1 c-tag + b-veto

VHbb categorisation:

• 2 b-tag

Orthogonality with VHbb: • Always < 2 b-tagged jets

A. Stamenkovic, LHCP Poster session, 10.06.21

Categorisation of events with 2 jets

Analysis strategy: how do I reconstruct my Higgs?

VHcc categorisation:

- 2 c-tag + b-veto
- 1 c-tag + b-veto
- Additional b-veto on 3+jets

VHbb categorisation:

• 2 b-tag

Orthogonality with VHbb: • Always < 2 b-tagged jets

A. Stamenkovic, LHCP Poster session, 10.06.21

Categorisation of events with 3 jets

Kc interpretations

Kc interpretation: quantity possible deviations from the SM

- Parametrise signal strength as a function of coupling enhancement Kc
- Assume Ki = 1 for other fermions and bosons
- Only sensitive to Kc if μ < 35 due to Higgs width in parametrisation
- Direct constraint: |Kc| < 8.5 @ 95% CL (<12.4 @ 95%CL expected)
 - Only sensitive to Kc through combination of 0-, 1 and 2-lepton

M. Stamenkovic, LHCP Poster session, 10.06.21

deviations from the SM

ction of coupling enhancement Kc Id bosons

Higgs width in parametrisation
 % CL (<12.4 @ 95%CL expected)
 bination of 0-, 1 and 2-lepton

Breakdown of uncertainties

- Similar statistical and systematic uncertainties
- Dominant systematic uncertainties:
 - Background modelling: V+jets and ttbar
 - Simulation statistics
 - Truth flavour tagging

Breakdown of uncertainties

	Source of uncertainty		$\mu_{VH(c\bar{c})}$	$\mu_{VW(cq)}$	$\mu_{VZ(c\bar{c})}$
-	Total		15.3	0.24	0.48
	Statistical		10.0	0.11	0.32
	Systematics		11.5	0.21	0.36
	Statistical uncertainties				
	Data statistics only		7.8	0.05	0.23
	Floating normalisation	S	5.1	0.09	0.22
_	Theoretical and modell	ing uncertainties			
-	$VH(\rightarrow c\bar{c})$		2.1	< 0.01	0.01
	Z+jets		7.0	0.05	0.17
	Top-quark		3.9	0.13	0.09
	W+jets		3.0	0.05	0.11
	Diboson		1.0	0.09	0.12
	$VH(\rightarrow bb)$		0.8	< 0.01	0.01
	Multi-Jet	1.0	0.03	0.02	
	Simulation statistics		4.2	0.09	0.13
	Experimental uncertain	nties			
	Jets		2.8	0.06	0.13
	Leptons		0.5	0.01	0.01
	$E_{ m T}^{ m miss}$		0.2	0.01	0.01
	Pile-up and luminosity		0.3	0.01	0.01
		<i>c</i> -jets	1.6	0.05	0.16
	Elevour tegging	<i>b</i> -jets	1.1	0.01	0.03
	Flavour tagging	light-jets	0.4	0.01	0.06
		au-jets	0.3	0.01	0.04
	Tranth Access to a size	ΔR correction	3.3	0.03	0.10
	Trutn-пavour tagging	Residual non-closure	1.7	0.03	0.10

Background composition plots: postfit 0-lepton

M. Stamenkovic, LHCP Poster session, 10.06.21

Background composition plots: postfit 1-lepton

M. Stamenkovic, LHCP Poster session, 10.06.21

3 jets

Background composition plots: postfit 2-lepton

2 jets

≥3 jets

M. Stamenkovic, LHCP Poster session, 10.06.21

2 jets

≥3 jets

Results: signal strength

VH(cc) POI

M. Stamenkovic, LHCP Poster session, 10.06.21

VZ(cc) and VW(cq) POI

Postfit SR

M. Stamenkovic, LHCP Poster session, 10.06.21

Postfit distributions: 1-lepton 2 jets 3 jets

1 c-tag

2 c-tag

M. Stamenkovic, LHCP Poster session, 10.06.21

M. Stamenkovic, LHCP Poster session, 10.06.21

Postfit distributions: 2-lepton

pTV > 150 GeV 3+ jets 2 jets

Event displays

Event displays

0-lepton

M. Stamenkovic, EPS-HEP conference, 26.07.21

1-lepton

2-lepton

	<u>2015+2016 (36 /fb)</u>	Full Run 2
Flavour tagging	c-tagging (MV2 based)	c-tagging + b-tag veto (DL1 vs MV2 based)
Jets categories	2+jets	2 and 3+jets
pTV	Low and high pTV	Low and high pTV
SRs	1 c-tag and 2 c-tag	1 c-tag and 2 c-tag
CRs	Top emu	Top emu, High dR CR, 0 c-tag
VH(bb) treatment	SM bkg SR Overlap	SM bkg Orthogonality in SR
VH(bb) fraction in 2 c-tag	6%	0,7%
Truth tagging	ΔR(jet1,jet2)	Min ΔR(tagged jet, closest jet2)
FTAG calibrations	36/fb	140/fb, 80/fb for c-jets
Modelling	36/fb	140/fb

Comparison VHcc 139/fb vs ZHcc 36/fb

