

Measurements of Higgs Boson Cross Sections and Differential Distributions, and Searches for Lepton Flavor Violating Decays in Leptonic Final States at CMS

Andrew Loeliger, University of Wisconsin-Madison

On behalf of the CMS collaboration

Overview

Analysis	Link To Documentation
$H\tau\tau$ Simplified Template Cross Section Analysis	<u>CMS-PAS-HIG-19-010</u>
$H\tau\tau$ Differential Cross Section Analysis	CMS-PAS-HIG-20-015
$H\mu\tau/He\tau$ Lepton Flavor Violation Search	HIG-20-009, ArXiv Link

- Why look at leptonic final states of the Higgs boson decay?
- $H \rightarrow \tau \tau$ decays...
 - ... provide direct observation of the yukawa coupling
 - ... have a high branching fraction that allows for measurements of rarer parts of Higgs Phase space (high transverse momentum, large jet multiplicity, etc)
- *H* lepton flavor violating decay modes would be evidence of BSM physics
- Note: Silvio Donato will cover the $H \rightarrow \mu\mu$ channel in his talk here

Simplified Template Cross Section Framework

STXS ggH/VBF framework with merging of gen-level bins measured at CMS. HIG 19-010

CMS STXS Measurement Strategy

- The Di-Tau decay is picked up in 4 channels: $\tau_h \tau_h$, $\mu \tau_h$, $e \tau_h$, $e \mu$
 - Hadronic taus are reconstructed via the Hadrons Plus Strips (HPS) algorithm, and identified via the DeepTau machine learning algorithm

Signal Strengths: Stage 0

Signal Strengths: Stage 1.2

- Signal strengths computed for certain merging schemes of STXS bins
- Good overall agreement of parameters with SM

Cross Section Measurements: Stage 1.2

7/25/2021

Loeliger-University of Wisconsin-Madison

As a reminder:

CMS

• ggH

WISCONSIN

• VBF/qqH

$\kappa_v \kappa_f$ and ggH vs. VBF.

- 8
- Both close to 1σ agreement with SM

Differential Analysis

- This analysis targets an inclusive and differential fiducial higgs XS measurement using $H \rightarrow \tau \tau$ decays
 - Provides a more model independent way to look at Higgs physics in secondary variables than the STXS scheme, but integrates over production modes
- Three variables are considered that provide the most interesting measurements and where the $H \rightarrow \tau \tau$ channel can contribute
 - Higgs Pt Offers particularly good probe of BSM Physics
 - Jet Multiplicity
 - Leading Jet Pt
- The $H \rightarrow \tau \tau$ channel offers a good way to examine low cross section regions of phase space
 - High branching fraction to massive taus
- This is the first time that a differential analysis has been performed for the $H \rightarrow \tau \tau$ channel at the LHC

- The Di-Tau decay is picked up in 4 channels: $\tau_h \tau_h$, $\mu \tau_h$, $e \tau_h$, $e \mu$
- Fiducial region defined similarly to offline selection
- In order to maintain independence from the three differential variables, the analysis is categorized based on tau pt
 - S/B increases with p_t^{τ}
 - $e\mu$ left uncategorized
- Three categories are used:
 - Low p_t^{τ} : 30-50 GeV (40-50 GeV for $\tau_h \tau_h$)
 - Intermediate p_t^{τ} : 50-70 GeV
 - High p_t^{τ} : 70+ GeV

Categorization and Signal Extraction

- Categories use di-tau mass as a primary observable
 - Categories also split further with each observable parameter given a bin, except where statistics do not permit it

Likelihood Fitting

- 12
- Results are extracted as a simultaneous fit maximizing the likelihood function of the form:

Regularization

- 13
- To remove unphysical (statistical) fluctuations of parameters, regularization is employed
- A penalty term of the form:

$$\mathcal{K}(\boldsymbol{\mu}) = \prod_{j=1}^{M-2} \exp\left(\frac{-\left[\left(\mu_{j+1} - \mu_{j}\right) - \left(\mu_{j} - \mu_{j-1}\right)\right]^{2}}{2\delta^{2}}\right)$$

Where *M* is the number of bins, and δ controls the strength of the regularization is multiplied in the likelihood function

- δ is optimized to minimize mean global correlation coefficient
 - p_t^H , $\delta = 1.85$
 - $N_{Jets}, \delta = 1.35$

•
$$p_t^{j_1}, \delta = 2.35$$

S/B Weighted Plots (p_t^H)

Differential X-Sec

Differential Summary

- 16
- This is the first time that a differential analysis has been performed for the $H \rightarrow \tau \tau$ channel
- The differential analysis shows good agreement with SM expectation
 - Values largely agree within uncertainties
 - P-values (with respect to SM)17%/71%/45% for $p_t^H/N_{Jets}/p_t^{j_1}$
- Particularly precise, with comparable precision in the fiducial region to CMS Run 2 differential analyses for...
 - $120 \ GeV < p_t^H < 600 \ GeV$
 - $N_{Jets} > 2$
 - $p_t^{j_1} > 120$

Higgs Lepton Flavor Violation

- Certain BSM models give rise to Higgs decays that do not conserve lepton flavor (multiple Higgs doublets, certain supersymmetric models, etc).
- The CMS lepton flavor violation analysis uses a Boosted Decision Tree (BDT) to discriminate between signal and background in distributions
- The analysis searches for 4 channels/decay modes: $\mu \tau_h$, $\mu \tau_e$, $e \tau_h$, $e \tau_\mu$
 - Each channel has its own BDT input variables
- The analysis also categorizes events by number of jets 0,1 and 2 jets
 - The 2 jet category is further split, with higher m_{jj} events being a part of the VBF category
- Then overall signal strength of Higgs lepton flavor violating decays is extracted from a fit to the BDT output distributions

BDT Output Score

- BDT Inputs
 - p_t of the leptons
 - visible and collinear mass,
 - transverse mass,
 - $\Delta \phi$ and $\Delta \eta$ between various leptons
 - MET in the $\mu \tau_h$ channel

Higgs Lepton Flavor Violation Branching Ratio Results

- No significant excess is seen in any channel
- observed (expected) upper limits at 95% CL:
 - *μτ*: 0.15(0.15)%
 - *eτ*: 0.22(0.16)%

Summary

- The $H \rightarrow \tau \tau$ decay mode continues to get more precise
 - First STXS Stage 1.2 cross section measurements have been performed
 - An LHC first, differential $H \rightarrow \tau \tau$ measurements have been performed in 3 major kinematic variables
 - All cases show good agreement with SM expectations
- Higgs lepton flavor violation analyses using boosted decision trees have been performed and have found no significant excess with respect to SM expectation
 - More stringent upper limits on LFV branching fraction:
 - Observed (expected) 95% CL: $\mu\tau$: 0.15(0.15)%, $e\tau$: 0.22(0.16)%
- What is next in Higgs to lepton measurements?
 - More exclusive production mode analyses
 - Boosted topologies (higher p_t^H)

7/25/2021

Andrew Loeliger - University of Wisconsin -Madison

S/B Weighted Plots (N_{jets})

S/B Weighted Plots $(j_1^{p_t})$

Differential Signal Strength

24

Observed Inclusive Cross Section: 426 ± 102 fb

LFV BDT Input

- Input Variables:
 - $e\tau_h: p_T^e, p_T^{\tau_h}, m_{col}, m_{vis}, m_T(\tau, \vec{p}_T^{miss}), \Delta\eta(e, \tau_h), \Delta\phi(e, \tau_h), \Delta\phi(\tau_h, \vec{p}_T^{miss})$
 - $e\tau_{\mu}$: p_T^{μ} , p_T^{e} , m_{col} , m_{vis} , $m_T(\mu, \vec{p}_T^{miss})$, $\Delta\phi(e, \mu)$, $\Delta\phi(\mu, \vec{p}_T^{miss})$, $\Delta\phi(e, \vec{p}_T^{miss})$
 - $\mu \tau_h: p_T^{\mu}, p_T^{\tau_h}, m_{col}, \vec{p}_T^{miss}, m_T(\tau, \vec{p}_T^{miss}), \Delta \eta(\mu, \tau_h), \Delta \phi(\mu, \tau_h), \Delta \phi(\tau_h, \vec{p}_T^{miss})$
 - $\mu \tau_e: p_T^{\mu}, p_T^e, m_{col}, m_T(\mu, \vec{p}_T^{miss}), m_T(e, \vec{p}_T^{miss}), \Delta \phi(e, \mu), \Delta \phi(\mu, \vec{p}_T^{miss}), \Delta \phi(e, \vec{p}_T^{miss})$

Coupling Constants

