EPS-HEP Conference 2021

European Physical Society conference on high energy physics 2021

Online conference, July 26-30, 2021

Measurements of Higgs production and decay in final states involving quarks

Aliya Nigamova (UHH), on behalf of the CMS Collaboration 26.07.2021

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Introduction

- Since the observation of the Higgs boson almost 9 years ago in H $\rightarrow \gamma \gamma$ and
 - $H \rightarrow ZZ^*$:
 - Efficient b(c)-tagging
 - More statistics
 - Improved analysis techniques
 - Allowed the measurements of 2nd and 3rd generation couplings
- Most recent CMS results on partial Run 2 data:
 - tH (H \rightarrow bb)
- ttH (H \rightarrow bb)
- Larger σ - VH (H \rightarrow bb)
 - VH (H \rightarrow CC, 20 times lower BR than H \rightarrow bb)
 - ggH (H \rightarrow bb̄)

USTER OF EXCELLENCE QUANTUM UNIVERSE

tH (H \rightarrow bb) L=35.9 fb⁻¹@13 TeV

tH (H \rightarrow bb) Overview

- tH processes very rare in SM
 - Destructive interference between top and W couplings
- Can be greatly enhanced in BSM scenarios
 - Sensitive to the relative phase between top and W couplings
 - Sensitive to the value and the sign of y_t
 - Inverted top coupling leads to 10x increase in production

tH (H \rightarrow bb) Analysis strategy

- Categorisation:
 - 3 and 4 b-tag SR,1 lepton, MET
 - 2 b-tag CR, 2 leptons, MET
- Jet Assignment BDT (tHq vs. tt vs. tHW)
 - Kinematics and b-tag as input
- tt+jets: tt+LF, tt+cc, tt+bb, tt+b, tt+2b
- 2 BDTs:
 - tHq vs. tt+jets and ttV (SC-BDT)
 - tt+bottom vs. tt+light (FC-BDT)

CLUSTER OF EXCELLENCEUHQUANTUM UNIVERSE

tH (H \rightarrow bb)

- The tH (H \rightarrow bb) 35.9 fb⁻¹analysis upper limits are set at 6.88 pb
- Not sensitive enough to observe the channel, but important for constraints on κ_t
- Entered the combination paper: excluding κ_t < -0.9, -0.5 < κ_t < 0.9, κ_t > 2 at 95% C.L.

$t\bar{t}H (H \rightarrow b\bar{b})$ L=35.9+41.5 fb⁻¹@13 TeV

Overview

- The best production mode to directly measure the top-Higgs coupling
- Rare process (~1% of Higgs events), but clean tt signature
- $H \rightarrow b\bar{b}$ largest BR (58%)

Results in a complex final state:

- Split to 3 channels by W decay modes: FH, SL, DL
- Important background:
 - ► tt+Jets (FH, SL, DL)
 - QCD multijet (FH)

$t\bar{t}H (H \rightarrow b\bar{b})$ Analysis strategy

Full hadronic channel:

- 6 categories: jet (7, 8, ≥9) and b-tag (3, ≥4) multiplicities
- Major QCD multi-jet background
 estimated from data
- Signal extraction: Matrix Element Method

Dileptonic channel:

- 5 categories: jet (3,4) and b-tag (2,3,≥3, ≥4) multiplicities
- Major tt + jets background (tH categorisation) estimated from simulation
- BDT trained for each category

Semileptonic channel:

- 3 categories: (4, 5, ≥6) jets and at least ≥3 b-tagged jets
- Major tt + jets background estimated from simulation
- Further categorisation via multiclass NN: 1 signal node and 5 flavour-dependent nodes for tt + jets
- ANN output used as final discriminant

 $t\bar{t}H (H \rightarrow b\bar{b})$ Results

- Excellent agreement with the SM!
- Limited by systematic uncertainties: theory uncertainties of signal and $t\overline{t}$ +HF

QUANTUM UNIVERSE

VH (H \rightarrow bb) L=35.9+41.5 fb⁻¹@13 TeV

 $\bar{\nu}$ \bar{l}

VH (H \rightarrow bb) Analysis strategy

- 3 channels are considered:
 - 0-lepton (Z $\rightarrow \nu \nu$),
 - 1-lepton (W \rightarrow l ν)
 - 2 lepton (Z $\rightarrow \mu\mu/ee$)
- Higgs decay:
 - AK4 b-tagged jets (DeepCSV discriminator), DNN based regression [link]
- Background normalisation is obtained from control regions:
 - tt; V + Heavy Flavour (HF) jets; V + Light Flavour (LF) jets
- Signal is extracted using DNN, + multi-output DNN in HF Z $\rightarrow \nu\nu$ and W \rightarrow I $\!\nu$ categories
- 2 cross-check analyses: VZ(bb) measurement and mass based analysis

[Phys. Rev. Lett. 121, 121801]

$VH (H \rightarrow b\bar{b})$ Results

- The observation analysis for VH $(H \rightarrow b\overline{b})$ process
- The partial Run 2 analysis was combined with Run 1 measurement
- Consistent with the SM and statistically dominated [details]

 $[0.17\,(\text{stat})\pm0.09\,(\text{exp})\pm0.06\,(\text{MC})\pm0.08\,(\text{theo})]$

Significance (σ)							
Data set	Expected	Observed	Signal strength				
2017							
0-lepton	1.9	1.3	0.73 ± 0.65				
1-lepton	1.8	2.6	1.32 ± 0.55				
2-lepton	1.9	1.9	1.05 ± 0.59				
Combined	3.1	3.3	1.08 ± 0.34				
Run 2	4.2	4.4	1.06 ± 0.26				
Run 1 + Run 2	4.9	4.8	1.01 ± 0.22				

77.2 fb⁻¹ (13 TeV)

CLUSTER OF EXCELLENCE

[Phys. Rev. Lett. 121, 121801]

$VH (H \rightarrow b\bar{b})$ Results

- The observation analysis for VH $(H \rightarrow b\overline{b})$ process
- The partial Run 2 analysis was combined with Run 1 measurement
- Consistent with the SM and statistically dominated
- Enters the combination with other production modes
- Full Run 2 measurement is on _{Combined} the way!

 $\leq 5.1 \text{ fb}^{-1}$ (7 TeV) + $\leq 19.8 \text{ fb}^{-1}$ (8 TeV) + $\leq 77.2 \text{ fb}^{-1}$ (13 TeV)

VH (H \rightarrow cc̄) L=35.9 fb⁻¹@13 TeV

VH (H \rightarrow c \bar{c}) Overview

- So far only the coupling to the 3rd generation observed (recent evidence of H → μμ from CMS in Silvio's talk)
- $H \rightarrow c\bar{c}$
 - Relatively small BR (2.9%)
 - $H \rightarrow b\bar{b}$ is a background in this search
 - Heavily relying on charm-tagging
 - Heavily contaminated with hadronic backgrounds
- VH production mode provides clean event signature (triggering and QCD suppression)

[J. High Energ. Phys. 2020, 131 (2020)]

VH (H \rightarrow c \bar{c})

Analysis strategy

- 3 decay channels:
 - 0-lepton, 1-lepton, 2 lepton
- 2 Higgs decay topologies (two complementary analyses)
 - 2 resolved jets (R=0.4); 1 merged jet (R=1.5)
- V+jets one of the major background
 - Using control regions to constrain different V+jets flavours as well as tt
- Signal extraction
 - BDT in resolved analysis;
 - Higgs candidate mass in boosted, using additional kinematic BDT

UHI ∧ L

$\frac{\text{VH (H} \rightarrow c\bar{c})}{\text{Results}}$

Resolved-jet (inclusive)					Merged	l-jet (inc	lusive)	
	0L	1L	2L	All channels	0L	1L	2L	All channels
Expected UL Observed UL	$84^{+35}_{-24}_{-66}$	$79^{+34}_{-23}\\120$	$59^{+25}_{-17}\\116$	$\begin{array}{c} 38^{+16}_{-11} \\ 75 \end{array}$	$81^{+39}_{-24}\\74$	$\begin{array}{c} 88^{+43}_{-27} \\ 120 \end{array}$	$90^{+48}_{-29}\\76$	$49^{+24}_{-15}\\71$

No overlap because of mutually exclusive resolved-jet and merged-jet analyses

- Combined to improve sensitivity
- Compatible with SM
- Expect improvement with full Run 2 analysis

$ggH(H \rightarrow b\bar{b})$ L=136.2 fb⁻¹@13 TeV

$ggH (H \rightarrow b\bar{b})$ Overview

- Alternative approach to probe y_t
- Analysis targeting inclusive in production mode high p_T Higgs
 - sensitivity to BSM
- ggF is the dominant ~ 50% (55% after selection)
- [previous CMS result] 1.5 σ (0.7 σ) wrt bkg. only

ggH (H \rightarrow bb̄) Analysis strategy

- Higgs reconstructed in boosted topology
 - new DeepDoubleBTag (DDBT) algorithm (1.6x signal efficiency)
- Signal model updated wrt. previous search, HJ-MiNLO
- QCD bkg. estimated using CR, populated with events failing DDBT selection.
 - Transferred to SR (Rhalphabet)
- Higgs candidate mass is fitted for signal extraction

[J. High Energ. Phys. 2020, 85 (2020)]

ggH (H \rightarrow bb)

Other processes are fixed to SM prediction:

- + 2.5 σ wrt. bkg only, 1.9 σ wrt. SM
- For differential measurement STXS bins are used; 2.6 σ local significance $p_T(H) > 650$ GeV

QUANTUM UNIVERSE

Summary

- Covered recent results on Higgs cross section measurement in cc̄ and bb̄ final states
 - Based on partial (tH, ttH, VH H \rightarrow bb,VH H \rightarrow cc) and full (ggH H \rightarrow bb) Run 2 data
 - All in agreement with the SM
 - Plenty of room for improvement (more statistics, better techniques)
 - ★ Stay tuned for more full Run 2 results!
 - Expect improvement in the UL for VH (H \rightarrow cc̄)
 - More granular measurements of $H \rightarrow b\bar{b}$ final state

Backup

[CMS-PAS-BTV-20-001]

CLUSTER OF EXCELLENCE U

Light-flavour or gluon jet efficiency

10

10⁻² 10⁻²

JINST 13 P05011

DeepCSV c-tagging

Ĥ

DeepCSV b-tag SF

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

B-jet regression

MC sample	Improvement
tī	12.2%
$Z(\rightarrow \ell^+ \ell^-) H(\rightarrow b\bar{b})$	12.8%
$H(\rightarrow b\bar{b})H(\rightarrow \gamma\gamma) SM$	13.1%
$H(\rightarrow b\bar{b})H(\rightarrow \gamma\gamma)$ resonant 500 GeV	14.5%
$H(\rightarrow b\bar{b})H(\rightarrow \gamma\gamma)$ resonant 700 GeV	13.1%

CMS

ttH selection

	FH channel	SL channel	DL channel
Number of leptons	0	1	2
$p_{\rm T}$ of leptons (e/ μ) [GeV]		> 30/29	$> 25/25 \mathrm{GeV}$
$p_{\rm T}$ of additional leptons [GeV]	< 15	< 15	< 15
$ \eta $ of leptons	< 2.4	< 2.4	< 2.4
Number of jets	≥ 6	≥ 4	≥ 2
$p_{\rm T}$ of jets [GeV]	> 40	> 30	> 30, 30, 20
$ \eta $ of jets	< 2.4	< 2.4	< 2.4
Number of b-tagged jets	≥ 2	≥ 2	≥ 1
$p_{\mathrm{T}}^{\mathrm{miss}}$		> 20 GeV	> 40 GeV

ttH FH, DL, SL

Post-fit

Aliya Nigamova, EPS-HEP 2021

Measurements of Higgs production and decay in final states involving quarks

ttH Impacts

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

MEM ttH

ttH FH QCD rejection

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Measurements of Higgs production and decay in final states involving quarks

ttH MVAs

DL BDT

	(3 jets, 2b-tags)	(3 jets, 3 b-tags)	$(\geq 4 \text{ jets}, 2 \text{ b-tags})$	$(\geq 4 \text{ jets}, 3 \text{ b-tags})$	$(\geq 4 \text{ jets}, \geq 4 \text{ b-tags})$
Ntrees	747	580	1079	1432	1380
Shrinkage	0.019	0.029	0.045	0.050	0.048
Bagging Fraction	0.30	0.36	0.28	0.26	0.33
N _{cuts}	26	10	48	37	61
Depth	2	2	2	2	2
ROC AUC	0.78	0.77	0.79	0.78	0.81
					-tags) -tags) 3b-tags) ags) ags) ags) 4b-tags) 4b-tags)

SL ANN

	$(4 \text{ jets}, \geq 3 \text{ b-tags})$	$(5 \text{ jets}, \geq 3 \text{ b-tags})$	$(\geq 6 \text{ jets}, \geq 3 \text{ b-tags})$
nodes per hidden layer	100,100	100, 100	100,100
loss function	cross-entropy	cross-entropy	cross-entropy
dropout percentage	0.5	0.5	0.5
L2 regularization	10^{-5}	10^{-5}	10^{-5}
batchsize	5000	5000	5000
optimizer	$ADAM(10^{-4})$	$ADAM(10^{-4})$	$ADAM(10^{-4})$
activation function	ELU	ELU	ELU
last activation	softmax	softmax	softmax
earlystopping percentage	2%	2%	2%
earlystopping min epochs	50	50	50

		(4 jets , ≥ 3 b	$(5 jets, \ge 3 b$	$(\geq 6 \text{ jets}, \geq$. (3 jets, 2 b-ti	(3 jets, 3 b-t	. (≥ 4 jets, 21	. (≥ 4 jets, 31	, (≥ 4 jets, ≥
Variable	Definition	SL	SL	SL	DI	DI	D	D	IG
MEM	maxtrix element method discriminant	+	$^+$	+	-	_	-	$^+$	+
BLR	likelihood ratio discriminating between events with 4 b quark jets and 2 b quark jets	+	-	+	-	-	-	-	-
BLR ^{trans}	ln[BLR/(1 - BLR)]	+	-	+	-	-	-	-	-
p _T (jet 1)	$p_{\rm T}$ of the 1. jet, ranked in jet $p_{\rm T}$	-	$^+$		-	-	-	-	-
p _T (jet 3)	p_{T} of the 3. jet, ranked in jet p_{T}	-	$^+$	-	-	-	-	-	-
H ^b	scalar sum of $p_{\rm T}$ of b-tagged jets	+	$^+$	+	$^+$	_	-	-	+
$\sum_{j,lep} p_T$	scalar sum of $p_{\rm T}$ of leptons and jets	-	-	-	$^+$	$^+$	-	$^+$	-
N _b ^{tight}	number of b-tagged jets at a working point with 0.1% probability of tagging gluon and light-flavour jets	+	+	-	-	-	-	-	-
d(jet 4)	b-tagging discriminant value of 4. jet, ranked in jet $p_{\rm T}$	+	-	-	-	-	-	-	-
d_2	2. highest b-tagging discriminant value of all jets	+	+	+	-	-	-	-	-
d_j^{avg}	average b-tagging discriminant value of all jets	+	+	+	+	-	+	+	-
$d_{\rm b}^{\rm avg}$	average b-tagging discriminant value of all b-tagged jets	+	+	+	-	+	-	+	+
$d_{\rm b}^{\rm min}$	minimal b-tagging discriminant value of all b-tagged jets	+	+	-	-	-	-	-	-
$\frac{1}{N_b} \sum_b^{N_b} \left(d - d_b^{\text{avg}} \right)^2$	squared difference between the b-tagged dis- criminant value of a b-tagged jet and the av- erage b-tagging discriminant values of all b- tagged jets, averaged over all b-tagged jets	+	-	+	-	-	-	-	-
m'_{j}	sum of the masses of all jets divided by the number of dijet pairs	-	-	+	-	-	-	-	-
m ^{closest} to 125 b,b	mass of pair of b-tagged jets closest to $125{\rm GeV}$	-	+	-	-	+	-	-	-
$m_{lep,b}^{\min\Delta R}$	mass of pair of lepton and b-tagged jet closest in ΔR	-	-	+	-	-	-	-	-
decay in	mass of pair of jets closest in ΔR	au	arl	ś	+	+	-	-	-34

Aliya Nigamova, EPS-HEP 2021

Measurements of Higgs production and de

CMS.

tH selection, tt+jets categorisation

Signal region One muon (electron) with $p_T > 27(35)$ GeV No additional loose leptons Three or four medium b-tagged jets $p_T > 30$ GeV and $|\eta| < 2.4$ One or more untagged jets $p_T > 30$ GeV for $|\eta| < 2.4$ or

 $p_{\rm T} > 40 \,{\rm GeV}$ for $|\eta| \ge 2.4$ $p_{\rm T}^{\rm miss} > 35(45) \,{\rm GeV}$ for muons (electrons)

Control region Two leptons: $p_T > 20/20 \text{ GeV} (\mu^{\pm}\mu^{\mp})$ or $p_T > 20/15 \text{ GeV} (e^{\pm}e^{\mp}/\mu^{\pm}e^{\mp})$ No additional loose leptons Two medium b-tagged jets $p_T > 30 \text{ GeV}$ and $|\eta| < 2.4$ One or more additional loose b-tagged jets $p_T > 30 \text{ GeV}$ and $|\eta| < 2.4$ $p_T^{\text{miss}} > 30 \text{ GeV}$ and $|\eta| < 2.4$

$t\bar{t}+b\overline{b}$	Two additional jets arising from b hadrons
$t\bar{t}$ +2b	One additional jet arising from two merged
	b hadrons
tt+b	One additional jet arising from one b hadron
$t\bar{t}+c\bar{c}$	The three former categories combined for c hadrons
	instead of b hadrons
$t\bar{t}+LF$	All events that do not meet the criteria of the other
	four categories

tH yields

Process	3 tags	4 tags	Dilepton
tt+LF	24100 ± 5800	320 ± 180	5300 ± 1000
tī+cī	8500 ± 4900	340 ± 260	2100 ± 1200
$t\bar{t}+b\overline{b}$	4100 ± 2300	780 ± 430	750 ± 440
tt+b	4000 ± 2100	180 ± 110	770 ± 430
$t\bar{t}$ +2b	2300 ± 1200	138 ± 88	400 ± 230
Single top	1980 ± 350	78 ± 26	285 ± 37
tĪZ	202 ± 30	32.0 ± 6.6	54.8 ± 7.3
tĪW	90 ± 23	4.2 ± 2.8	31.4 ± 5.9
tZq	28.3 ± 5.7	2.9 ± 2.3	
Z+jets			69 ± 32
Total background	45300 ± 8300	1880 ± 550	9700 ± 1700
tīH	268 ± 31	62.0 ± 9.9	48.9 ± 5.9
tHq (SM)	11.1 ± 3.3	1.3 ± 0.3	0.31 ± 0.08
tHW (SM)	7.6 ± 1.1	1.1 ± 0.3	1.4 ± 0.2
Total SM	45700 ± 8300	1940 ± 550	9700 ± 1700
tHq ($\kappa_{\rm V} = 1 = -\kappa_{\rm t}$)	160 ± 38	19.1 ± 5.2	3.9 ± 1.0
tHW ($\kappa_{\rm V} = 1 = -\kappa_{\rm t}$)	92 ± 12	13.7 ± 2.3	17.6 ± 2.2
Data	44311	2035	9065

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

tH BDTs

tH FC-BDT

Variable	Description
CSV(bjet 3)	Output of the b tagging discriminant for the b-tagged jet with the third-highest b tagging value in the event
n _{jets} (tight)	Number of jets in the event passing the tight working point of the b tagging algorithm
CvsL(jet p_T 3)	Output of the charm <i>vs.</i> light-flavor tagging algorithm for the jet with the third-highest transverse momentum in the event
CSV(b-tagged jet 2)	Output of the b tagging discriminant for the b-tagged jet with the second-highest b tagging value in the event
$CvsL(jet p_T 4)$	Output of the charm <i>vs.</i> light-flavor tagging algorithm for the jet with the fourth-highest transverse momentum in the event
CvsB(jet p_T 3)	Output of the charm <i>vs.</i> bottom flavor tagging algorithm for the jet with the third-highest transverse momentum in the event
CSV(b-tagged jet 4)	Output of the b tagging discriminant for the b-tagged jet with the fourth-highest b tagging value in the event
n _{jets} (loose)	Number of jets in the event passing the loose working point of the b tagging algorithm

tH SC-BDT

Variable	Description
Event variables	
$\ln m_3$	Invariant mass of three hardest jets in the event
Aplanarity	Aplanarity of the event [?]
Fox–Wolfram #1	First Fox-Wolfram moment [?] of the event
$q(\ell)$	Electric charge of the lepton
tī jet assignment variables	
$\ln m(t_{had})$	Invariant mass of the reconstructed hadronically decay- ing top quark
CSV(W _{had} jet 1)	Output of the b tagging discriminant for the first jet as- signed to the hadronically decaying W boson
CSV(W _{had} jet 2)	Output of the b tagging discriminant for the second jet assigned to the hadronically decaying W boson
$\Delta R(W_{had} \text{ jets})$	ΔR between the two light jets assigned to the hadronically decaying W boson
tHq jet assignment variables	
$\ln p_{\rm T}({\rm H})$	Transverse momentum of the reconstructed Higgs boson candidate
$ \eta(\text{light-flavor jet}) $	Absolute pseudorapidity of light-flavor forward jet
$\ln m(\mathrm{H})$	Invariant mass of the reconstructed Higgs boson candi- date
CSV(H jet 1)	Output of the b tagging discriminant for the first jet as- signed to the Higgs boson candidate
CSV(H jet 2)	Output of the b tagging discriminant for the second jet assigned to the Higgs boson candidate
$\cos \theta(\mathbf{b_t}, \ell)$	Cosine of the angle between the b-tagged jet from the top quark decay and the lepton
$\cos heta^*$	Cosine of the angle between the light-flavor forward jet and the lepton in the top quark rest frame
$ \eta(t) - \eta(H) $	Absolute pseudorapidity difference of reconstructed Higgs boson and top quark
$\ln p_{\rm T}({\rm lightjet})$	Transverse momentum of the light-flavor forward jet
tHW jet assignment variable	
IA-BDT response	Best output of the tHW JA-BDT

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

tH post-fit

VHbb systematics and DNN post-fit

(CMS	Auton Solenoid
		Compact &

				_	5.1 fb ⁻¹ (7 ⁻	TeV) + 18.9 fb ⁻¹ (8 TeV) + 77	7.2 fb ⁻¹ (13 TeV)
Uncertainty source	Δ	μ	ries	10 ⁷	CMS	• Data	
Statistical	+0.26	-0.26	ut	106	- VH H→bb	Backgro	bund
Normalization of backgrounds	+0.12	-0.12	ш		VII, II 700		bb
Experimental	+0.16	-0.15		10 ⁵	•	Signal +	- Background
b-tagging efficiency and misid	+0.09	-0.08		4		······	
V+jets modeling	+0.08	-0.07		101	Ē		
Jet energy scale and resolution	+0.05	-0.05		4.03		·····	
Lepton identification	+0.02	-0.01		10°			• I
Luminosity	+0.03	-0.03		102			
Other experimental uncertainties	+0.06	-0.05		10			PRAFACTAR PARAMATA
MC sample size	+0.12	-0.12		10			
Theory	+0.11	-0.09					
Background modeling	+0.08	-0.08	ġ	, 1.5F			
Signal modeling	+0.07	-0.04	B / B	1			T
Total	+0.35	-0.33	Data	0.5			
				_(3 –2.5	-2 -1.5 -1	-0.5 0
							log ₁₀ (S/B)

VHcc systematics

Source	Туре	0-lepton	1-lepton	2-lepton
Size of simulated samples	shape	\checkmark	\checkmark	\checkmark
Jet energy scale	shape	\checkmark	\checkmark	\checkmark
Jet energy resolution	shape	\checkmark	\checkmark	\checkmark
MET unclustered energy	shape	\checkmark	\checkmark	
c tagging efficiency	shape	\checkmark	\checkmark	\checkmark
Lepton efficiency	shape (rate)		\checkmark	\checkmark
Pileup reweighting	shape	\checkmark	\checkmark	\checkmark
top $p_{\rm T}$ reweighting	shape	\checkmark	\checkmark	\checkmark
$p_{\rm T}({\rm V})$ reweighting	shape	\checkmark	\checkmark	\checkmark
PDF	shape	\checkmark	\checkmark	\checkmark
Renormalization and factorization scales	shape	\checkmark	\checkmark	\checkmark
VH: $p_{\rm T}(V)$ NLO EWK correction	shape	\checkmark	\checkmark	\checkmark
Luminosity	rate	2.5%	2.5%	2.5%
MET trigger efficiency	rate	2%		
Single top cross section	rate	15%	15%	15%
Diboson cross section	rate	10%	10%	10%
VH: cross section (PDF)	rate	\checkmark	\checkmark	\checkmark
VH: cross section (scale)	rate	\checkmark	\checkmark	\checkmark

VHcc BDT

Resolved

Variable	Description	0L	1L	2L
()				
$m(H_{cand})$	H _{cand} mass	\checkmark	\checkmark	\checkmark
$p_{\rm T}$ (H _{cand})	H _{cand} transverse momentum	\checkmark	\checkmark	\checkmark
$p_{\mathrm{T}}(\mathrm{V})$	vector boson transverse momentum	\checkmark	\checkmark	\checkmark
m(V)	vector boson mass			\checkmark
$m_{\rm T}({ m V})$	vector boson transverse mass		\checkmark	
$p_{\rm T}^{\rm miss}$	missing transverse momentum	\checkmark	\checkmark	
$p_{\rm T}({\rm V})/p_{\rm T}({\rm H}_{\rm cand})$	ratio between vector and H _{cand} transverse momentum	\checkmark	\checkmark	\checkmark
CvsL _{max}	<i>CvsL</i> tagger value of the leading <i>CvsL</i> jet	\checkmark	\checkmark	\checkmark
CvsB _{max}	CvsB tagger value of the leading CvsL jet	\checkmark	\checkmark	\checkmark
CvsL _{min}	<i>CvsL</i> tagger value of the subleading <i>CvsL</i> jet	\checkmark	\checkmark	\checkmark
CvsB _{min}	<i>CvsB</i> tagger value of the subleading <i>CvsL</i> jet	\checkmark	\checkmark	\checkmark
p_{Tmax}	$p_{\rm T}$ of the leading <i>CvsL</i> jet	\checkmark	\checkmark	\checkmark
p_{Tmin}	$p_{\rm T}$ of the subleading <i>CvsL</i> jet	\checkmark	\checkmark	\checkmark
$\Delta \phi(V, H_{cand})$	azimuthal angle between vector boson and H _{cand}	\checkmark	\checkmark	\checkmark
$\Delta R(\mathbf{j}_1,\mathbf{j}_2)$	ΔR between leading and subleading <i>CvsL</i> jet		\checkmark	\checkmark
$\Delta \phi(\mathbf{j}_1, \mathbf{j}_2)$	azimuthal angle between leading and subleading CvsL jet	\checkmark	\checkmark	
$\Delta \eta(\mathbf{j}_1,\mathbf{j}_2)$	difference in pseudorapidity between leading and subleading CvsL jet	\checkmark	\checkmark	\checkmark
$\Delta \phi(\ell_1, \ell_2)$	azimuthal angle between leading and subleading $p_{\rm T}$ leptons			\checkmark
$\Delta \eta(\ell_1, \ell_2)$	difference in pseudorapidity between leading and subleading $p_{\rm T}$ leptons			\checkmark
$\Delta \phi(\ell_1, j_1)$	azimuthal angle between leading $p_{\rm T}$ lepton and leading $CvsL$ jet		\checkmark	
$\Delta \phi(\ell_2, \mathbf{j}_1)$	azimuthal angle between subleading $p_{\rm T}$ lepton and leading $CvsL$ jet			\checkmark
$\Delta \phi(\ell_2, \mathbf{j}_2)$	azimuthal angle between subleading $p_{\rm T}$ lepton and subleading $CvsL$ jet			\checkmark
$\Delta \phi(\ell_1, p_{\rm T}^{\rm miss})$	azimuthal angle between leading $p_{\rm T}$ lepton and missing transverse momentum		\checkmark	
N _{aj}	number of small- <i>R</i> jets minus the number of FSR jets	\checkmark	\checkmark	\checkmark
N_{π}^{soft}	multiplicity of soft track-based jets with $p_{\rm T} > 5 {\rm GeV}$	\checkmark	\checkmark	\checkmark

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

VHcc BDT Boosted

Variable	Description	0L	1L	2L
$p_{\rm T}({\rm V})$	vector boson transverse momentum	\checkmark	\checkmark	\checkmark
$p_{\rm T}$ (H _{cand})	H _{cand} transverse momentum	\checkmark	\checkmark	\checkmark
$ \eta(H_{cand}) $	absolute value of the H _{cand} pseudorapidity	\checkmark		
$\Delta \phi(V, H_{cand})$	azimuthal angle between vector boson and H _{cand}	\checkmark	\checkmark	\checkmark
$p_{\mathrm{T}}^{\mathrm{miss}}$	missing transverse momentum		\checkmark	
$\Delta \eta(\mathbf{H}_{cand}, \ell)$	difference in pseudorapidity between H _{cand} and the lepton		\checkmark	
$\Delta \eta(H_{cand}, V)$	difference in pseudorapidity between H _{cand} and vector boson			\checkmark
$\Delta \eta (H_{cand}, j)$	min. difference in pseudorapidity between H _{cand} and small- <i>R</i> jets	\checkmark	\checkmark	\checkmark
$\Delta \eta(\ell, \mathbf{j})$	min. difference in pseudorapidity between the lepton and small- <i>R</i> jets		\checkmark	
$\Delta \eta(V,j)$	min. difference in pseudorapidity between vector boson and small- <i>R</i> jets			\checkmark
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{j})$	azimuthal angle between $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$ and closest small-R jet	\checkmark		
$\Delta \phi(ec{p}_{ m T}^{ m miss},\ell)$	azimuthal angle between $\vec{p}_{\rm T}^{\rm miss}$ and lepton		\checkmark	
m _T	transverse mass of lepton $\vec{p}_{\rm T} + \vec{p}_{\rm T}^{\rm miss}$		\checkmark	
N _{aj}	number of small-R jets	\checkmark	\checkmark	\checkmark

VHcc c-tagging and BDT in boosted

OUANTUM UNIVERSE

CMS

VHcc post-fit Boosted

Aliya Nigamova, EPS-HEP 2021

QUANTUM UNIVERSE

Measurements of Higgs production and decay in final states involving quarks

VHcc post-fit Resolved

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

VHcc ATLAS

ATLAS-CONF-2021-021

CLUSTER OF EXCELLENCE

DeepDoubleB

CMS

ggH

ggH systematics

Uncertainty source	$\Delta \mu_{ m H}$		
Statistical	+1.2	-1.2	
Signal extraction	+0.9	-0.8	
QCD pass-fail ratio (data correction)	+0.8	-0.7	
$\ensuremath{\mathrm{t}\bar{\mathrm{t}}}\xspace$ normalization and misidentification	+0.4	-0.4	
Systematic	+0.8	-0.7	
QCD pass-fail ratio (simulation)	+0.6	-0.6	
DDBT efficiency	+0.3	-0.1	
Jet mass scale and resolution	+0.3	-0.3	
Jet energy scale and resolution	+0.1	-0.1	
Simulated sample size	+0.2	-0.1	
Other experimental uncertainties	+0.1	-0.1	
Theoretical	+0.8	-0.5	
V+jets modeling	+0.6	-0.4	
H modeling	+0.5	-0.3	
Total	+1.6	-1.5	

ggH detailed results

	2016	2017	2018	Combined
Expected $\mu_{\rm Z}$	$1.00\substack{+0.38\\-0.28}$	$1.00\substack{+0.42\\-0.29}$	$1.00\substack{+0.43 \\ -0.29}$	$1.00\substack{+0.23 \\ -0.19}$
Observed $\mu_{\rm Z}$	$0.86\substack{+0.32 \\ -0.24}$	$1.11\substack{+0.48 \\ -0.33}$	$0.91\substack{+0.37 \\ -0.26}$	$1.01\substack{+0.24 \\ -0.20}$
HJ-MINLO [32, 33]				
Expected $\mu_{\rm H}$	$1.0\substack{+3.3 \\ -3.5}$	1.0 ± 2.5	$1.0\substack{+2.3 \\ -2.4}$	1.0 ± 1.4
Observed $\mu_{\rm H}$	$7.9^{+3.4}_{-3.2}$	$4.8\substack{+2.6 \\ -2.5}$	1.7 ± 2.3	$3.7^{+1.6}_{-1.5}$
Expected H significance $(\mu_{\rm H} = 1)$	0.3σ	0.4σ	0.4σ	0.7σ
Observed H significance	2.4σ	1.9σ	0.7σ	2.5σ
Expected UL $\mu_{\rm H}$ ($\mu_{\rm H} = 0$)	<6.8	$<\!5.0$	<4.7	<2.9
Observed UL $\mu_{\rm H}$	$<\!\!13.9$	< 9.3	$<\!5.9$	$<\!6.4$
Ref. [23] H $p_{\rm T}$ spectrum				
Expected $\mu_{\rm H}$	1.0 ± 1.5	$1.0\substack{+1.1\\-1.0}$	$1.0\substack{+1.1\\-1.0}$	$1.0\substack{+0.7 \\ -0.6}$
Observed $\mu_{\rm H}$	$4.0^{+1.9}_{-1.6}$	$2.2\substack{+1.4\\-1.2}$	1.1 ± 1.1	$1.9\substack{+0.9 \\ -0.7}$
Expected H significance $(\mu_{\rm H} = 1)$	0.7σ	0.9σ	1.0σ	1.7σ
Observed H significance	2.6σ	1.8σ	1.1σ	2.9σ
Expected UL $\mu_{\rm H}~(\mu_{\rm H}=0)$	<3.4	<2.4	$<\!\!2.3$	<1.4
Observed UL $\mu_{\rm H}$	<7.4	<4.6	<3.2	<3.4

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

ggH cross-check

QUANTUM UNIVERSE

