

CMS Experiment at the LHC, CERN Data recorded: 2018-Sep-30 16:00:48.744704 GMT Run / Event / LS: 323755 / 1382838897 / 755

Search for rare Higgs beson decays (CMS)

Silvio Donato (INFN Pisa) on behalf of the CMS Collaboration

EPS-HEP Conference 2021

July 26-30, 2021

Contents

- Introduction
- Run-2 results:
 - Higgs to muons,
 - Higgs to Zρ or Zφ.
- 2016-data results:
 - Higgs to $\ell\ell \gamma$,
 - Higgs to J/ ψ y,
- Conclusions

Higgs $\rightarrow \mu\mu$

CMS Experiment at the LHC, CERN Data recorded: 2018-Oct-03 01:19:17.320393 GMT Run / Event / LS: 323940 / 44997009 / 65

Higgs $\rightarrow \mu\mu$

- The search is divided by the **production modes**:
 - VBF (no b jets, no additional leptons, VBF selection),
 - ggH (no b jets, no additional leptons, VBF veto),
 - WH (no b jets, 1 additional leptons),
 - ZH (no b jets, 2 additional leptons),
 - Leptonic ttH (\geq 1 b jets, 1 add. leptons),
 - Hadronic ttH (\geq 1 b jets, 2 add. leptons).
- A **multivariate** discriminator is trained in each region (except VBF).
 - categories with different signal purity,
 - fit the Higgs boson peak dimuon mass.

Higgs $\rightarrow \mu\mu$

- Muon track fitted using primary vertex,
 - p_⊤ resolution improvement
 (3 10 %).

- Final state radiation (FSR) energy recovery:
 - p_τ resolution improvement (3%),
 - signal **efficiency** increase (2%).

Higgs $\rightarrow \mu\mu$

- Background model: "core" function x "empirical" function.
- Core function:
 - shared among all the categories;
 - based on theory to model the Z/ $\gamma^* \rightarrow \mu\mu$ line-shape.
- Empirical function:
 - Chebyshev polynomial specific to each category.
- Thorough bias studies:
 - pseudo-experiments generated with alternative background functions.
- Reduced number of free parameters
 - \rightarrow improved sensitivity ~10%

VBF Higgs $\rightarrow \mu\mu$

- **Simulation-based** analysis in **VBF** category:
 - signal extracted by fitting a DNN discriminator in
 - signal region: m_{µµ}=115-135 GeV,
 - side band: $m_{\mu\mu}$ =110-115 & 135-150 GeV.
 - The $m_{\mu\mu}$ is an **input** of the DNN;
 - in the **side band** we manually set $m_{\mu\mu} = 125 \text{ GeV}$;
 - background estimated using simulation templates;
 - expected sensitivity: +20%.

Higgs $\rightarrow \mu\mu$

- Results:
 - p-value: 3.0σ (2.5σ exp.),
 - μ = 1.19 ± 0.40 (stat) ± 0.15 (syst) → statistically limited.

S. Donato (INFN Pisa)

Higgs $\rightarrow Z \rho/\phi$

 $\begin{array}{c} Z \rightarrow \mu^{+}\mu^{-} \\ \text{or} \\ Z \rightarrow e^{+}e^{-} \end{array}$

$$\rho \rightarrow \pi^{+}\pi^{-}$$

or
 $\phi \rightarrow K^{+}K^{-}$

S. Donato (INFN Pisa)

Rare SM Higgs channels

Higgs $\rightarrow Z \rho/\phi$

- Higgs boson decay to Z ρ/φ is mediated by three LO diagrams
- **Direct coupling** to quarks is suppressed by a factor m_q^2/m_{H}^2 .

- 2HDM with SFV predicts enhancement of the Yukawa coupling up to 30, 500, and 2000 for s, d, and u quarks.
- SM prediction:
 - − B(H → Zρ) = (1.4 ±0.1) × **10**-5
 - − B(H → Zφ) = (4.2 ± 0.3) × **10**⁻⁶

 $H \rightarrow Z \rho/\phi$

- Z boson decay:
 - single lepton (e/μ) trigger,
 - exactly two opposite sign same flavour
 leptons with p_T > 20 GeV,
 - no additional lepton.
- Two isolated tracks ($p_T > 1 \text{ GeV}$) from ρ/ϕ decay,
 - close between them ($\Delta R < 0.1$),
 - leading track with $p_T > 10$ GeV.
- Select track pair with the largest p_T .
 - **selection efficiency**: 98–99%.

 $H \rightarrow Z \rho/\phi$

- No additional track in a cone of $\Delta R < 0.3$ around ρ/ϕ candidate.
- Ditrack mass windows:
 - ρ : 0.6 < $m_{\pi\pi}$ < 1 GeV (m_{\pi} = 139.6 MeV)
 - φ: 1.005 < m_{κκ} < 1.035 GeV (m_κ=493.7 MeV)

- Measurement of the isolation cut efficiency:
 - tag&probe in Z → μμ data.

S. Donato (INFN Pisa)

 $H \rightarrow Z \rho/\phi$

- Signal template from simulation
- Analytic background function
 - Polynomial (2nd-5th deg.).
- Limits obtained for the isotropic, longitudinal, transverse polarization.
- No signal excess.
- Limits on BR:
 - B(H \rightarrow Zp): 740-940 x B_{SM};
 - $B(H \rightarrow Z\phi)$: 730-950 x B_{SM} .

Other rare SM Higgs decay

Higgs $\rightarrow J/\psi \gamma$

- The decay $H \rightarrow J/\psi \gamma$ can be mediated by the Higgs boson coupling to **charm** quark,
 - other diagrams contributes to the decay.
- The SM prediction of the decays is

- B_{SM} (H \rightarrow J/ $\psi \gamma$) = 3.0 ± 0.2 10⁻⁶.

- Analysis performed on 2016 data
 - Exploring the J/ $\psi \rightarrow \mu\mu$ channel.
- The 95% CL upper limit obtained is
 - BR < 7.6 10^{-4} (260 x B_{SM})
- (see Aliya's talk on $H \rightarrow cc$)

Higgs $\rightarrow \ell \ell \gamma$

- Search for $H \rightarrow \ell \ell \gamma$ performed in two channels:
 - H \rightarrow $\gamma^{*}(\mu\mu)\gamma$ (m_{\mu\mu}{<}50 GeV) [BR_{SM} = 3.8 10-5],
 - H \rightarrow Z($\ell\ell$) γ (m_{µµ}>50 GeV) [BR_{SM} = 5.1 10⁻⁵].
- Categories with different purities.
- 95% CL upper limit: μ < 3.9 (μ < 2.0 exp.)

Conclusions

- A large improvement has been obtained wrt the previous analysis.
- Limits have been set on the Higgs boson decays with a **meson** in the final state.
- Further improvements will be obtained with Run-3 data, and finally with HL-LHC data.
- We are probing the Higgs boson decay branchion ratios at the level of **10**-4 !
 - No significant deviation from the SM prediction has been found, so far...

