

Measurements and interpretations of STXS, differential and fiducial cross sections in Higgs boson decays to two photons with the ATLAS detector

Eleonora Rossi

on behalf of the ATLAS Collaboration

EPS-HEP2021, 26/07/2021

UNIVERSITÉ SAVOIE MONT BLANC

APP Higgs-boson properties: precision measurements

Fiducial cross sections:

- largely model-independent measurements.
- Include information on the decay.
- Different distributions can be measured.
- Fiducial selection matches experimental selection (reduce full phase space extrapolation).

LHCHWGFiducialAndSTXS

Simplified template cross section (STXS):

- STXS targets phase space regions within production modes, using Standard Model kinematics as a template.
- Categorise each production mode in bins of key (truth) quantities $(p_T^H, N_{jets}, m_{jj}, ...)$.
- Reduce theory systematics, but more model-dependent.
- No decay information available in STXS (for the moment).

Eleonora Rossi

\bigcirc APP Higgs cross sections in $H \rightarrow \gamma \gamma$ decay channel

ATLAS-CONF-2019-029

- Fiducial integrated and differential cross sections (2015–2018 dataset, $\sqrt{s} = 13$ TeV 139 fb⁻¹):
 - integrated cross section: $\sigma \times BR = N_{signal}/(L \cdot \epsilon \cdot A) \rightarrow \underline{backup}$
 - ★ differential cross section: $d(\sigma \times BR)/dx$, $x = p_T^{\gamma\gamma}$, $|y_{\gamma\gamma}|$, N_{jets} , p_T^{j1} , m_{jj} , $\Delta \varphi_{jj}$) -> interpretations.
 Observables sensitive to new physics, spin and CP-quantum number of the Higgs ($\Delta \varphi_{jj}$) but also QCD calculations in the SM ($p_T^{\gamma\gamma}$, p_T^{j1} , N_{jets}).
- Main improvements with respect to previous measurements:
 - reduced statistical and systematic uncertainties;
 - improved signal efficiency/background rejection for diphotons.

ATLAS-CONF-2020-026

- STXS cross sections (2015–2018 dataset, $\sqrt{s} = 13 \text{ TeV} 139 \text{ fb}^{-1}$):
 - ◆ measure production cross sections in the STXS framework -> Higgs-boson production phase space ($|y_H| < 2.5$) split by production process as well as kinematic and event properties.
- Main improvements with respect to previous measurements:
 - ♦ increased granularity (including differential $t\bar{t}H$ measurement)-> 27 STXS regions
 - new categorisation; reduces uncertainties and correlations.

$APP \qquad The H \rightarrow \gamma\gamma \text{ analysis in a nutshell}$

- Small BR (~0.2%) but excellent performance of photon reconstruction and identification + mass resolution-> clean signature.
- Experimental signature:
 - narrow resonance with a width consistent with detector resolution rising above a smooth background in the diphoton invariant mass ($m_{\gamma\gamma}$) distribution. **ATLAS-CONF-2020-026**

Analysis cuts

◆ defined by two isolated photons with $p_T^{leading}/m_{\gamma\gamma} > 0.35$ and $p_T^{subleading}/m_{\gamma\gamma} > 0.25$.

- $|\eta| < 1.37$ or $1.52 < |\eta| < 2.37$.
- ♦ jets: $p_T > 30$ GeV and rapidity |y| < 4.4.
- $|y_H| < 2.5$ for STXS measurements.
- Results: fit diphoton mass $m_{\gamma\gamma}$ using parameterised signal and background shapes in each category.

Categorisation for STXS measurements

- Multi-classifier BDT used to separate events into STXS bins.
- Binary BDT classifier applied in each STXS bin to divide events into different categories and improve the sensitivity.

Training variables in backup

The $H \rightarrow \gamma \gamma$ analysis in a nutshell

- Small BR (~0.2%) but excellent performance of photon reconstruction and identification + mass resolution-> clean signature.
- Experimental signature:
 - narrow resonance with a width consistent with detector resolution rising above a smooth background in the diphoton invariant mass $(m_{\gamma\gamma})$ distribution. **ATLAS-CONF-2020-026**

EPS-HEP 2021, 26/07/2021

Eleonora Rossi

6

$\textcircled{} APP \quad H \rightarrow \gamma\gamma: \text{ differential and fiducial cross sections}$

- The distributions are compared to the state-of-the art theory predictions and used for the interpretations.
- The $p_T^{\gamma\gamma}$ distribution is compared to NNLOJET+SCET.
- The $p_T^{\gamma\gamma}$ distribution reaches out to 350 GeV, a region where top-quark mass effects start to become sizeable.
- A finer binning has been chosen at lower p^{γγ}_T to probe the region where resummation effects are important and to probe the charm quark Yukawa coupling -> results presented in <u>Marko's talk</u> (+ <u>backup</u>).

ATLAS-CONF-2019-029

Eleonora Rossi

Eleonora Rossi

APP Anomalous Higgs-boson interactions through EFT

• 1D and 2D limits obtained fitting one or two WC at the time (and fixing the others to 0 -> SM).

> $\mathcal{L}_{\mathrm{eff}}^{\mathrm{SILH}} \supset$ $\overline{c}_g O_g + \overline{c}_\gamma O_\gamma + \overline{c}_{HW} O_{HW} + \overline{c}_{HB} O_{HB}$ $+ \tilde{c}_g \widetilde{O}_g + \tilde{c}_\gamma \widetilde{O}_\gamma + \tilde{c}_{HW} \widetilde{O}_{HW} + \tilde{c}_{HB} \widetilde{O}_{HB}$

> > 0 4<u>×10[∹]</u>

 $\mathcal{L}_{\mathrm{eff}}^{\mathrm{SMEFT}} \supset$ $\overline{C}_{HG}O'_{g} + \overline{C}_{HW}O'_{HW} + \overline{C}_{HB}O'_{HB} + \overline{C}_{HWB}O'_{HWB}$ $+\widetilde{C}_{HG}\widetilde{O}'_{g}+\widetilde{C}_{HW}\widetilde{O}'_{HW}+\widetilde{C}_{HB}\widetilde{O}'_{HB}+\widetilde{C}_{HWB}\widetilde{O}'_{HWB}$

• The limits in the interference and interference + pure BSM cases are very similar for coefficients of CP-even operators (interference terms dominate).

• Destructive interference causes the ggF production cross • Significant differences emerge for the CPsection=0 around $\bar{c}_g \sim -2.2 \cdot 10^{-4}$ for $\tilde{c}_g \sim 0$ -> structure seens one for which the interference term is in the observed limits in the two-dimensional parameter plane. $\int_{0}^{0.1} \tilde{v}_{e} = \tilde{v}_{a}$ anishing (for inclusive jobservables).

Fleonora Rossi

$H \rightarrow \gamma \gamma$: STXS cross sections

•	The	relative	uncertainties	on	the	measurements
	rang	e from 20	% to more than	100	%.	

H→γγ, m _µ = 125.09 GeV		243,743,888,929,243,2443,888,9292,2443,2443 ,2443,2443,2443,2443,2443,24	I otal	Stat.	Syst.
gg→H 0J 0 < p _T ^H 10		0.76	-0.30 ((± 0.26,	+0.16 -0.16
gg→H 0J p _T ^H > 10		1.17	+0.20 -0.19	(± 0.15	+0.1 ', -0.1
gg→H 1J 0 < p _T ^H < 60		0.91	+0.44 -0.43 ((± 0.40,	+0.1 -0.16
gg→H 1J 60 < p _T ^H < 120	ten in the second se	1.18	+0.39 -0.37	(± 0.37	, +0.1 , -0.0
gg→H 1J 120 < p ^H _T < 200		0.70	± 0.52	(± 0.5	0, +0 -0.
gg→H ≥2J 0 < m_{JJ} < 350, 0 < p_T^H < 60		0.47	+1.28 -1.21	(+1.16 (-1.15 ,	+0.55 -0.38
gg→H ≥2J 0 < m _{JJ} < 350, 60 < p _T ^H < 120		0.28	± 0.59	(+0.57 (-0.58	+0.1 ,-0.12
gg→H ≥2J 0 < m _{JJ} < 350, 120 < p _T ^H < 200	••	0.60	+0.48 -0.47	(± 0.45	+0.1 ,-0.1
gg→H ≥2J m _{JJ} > 350, 0 < p_T^H < 200		2.25	+0.99 -0.91	(<mark>+0.88</mark> -0.87 ,	+0.47 -0.29
$gg \rightarrow H 200 < p_T^H < 300$	•	1.00	+0.40 -0.37	(<mark>+0.38</mark> (_{-0.36} ,	+0.13 -0.09
$gg \rightarrow H 300 < p_T^H < 450$		0.20	+0.57 -0.50	(<mark>+0.55</mark> , _{-0.49}	+0.14
gg→H p _T ^H > 450		1.64	+1.45 -1.16	(+1.44 (_{-1.16} ,	+0.1 -0.06
qq→Hqq ≤ 1J		1.55	+1.23 -1.08	+1.15 (-1.02 ,	+0.44 -0.38
qq→Hqq ≥2J 0 < m	H	3.16	+1.84 -1.72	(+1.70 (-1.62 ,	+0.71 -0.57
qq→Hqq ≥2J 60 < m _{JJ} < 120		0.76	+0.95 -0.83	+0.91 (_{-0.80} ,	+0.25 -0.24
qq→Hqq ≥2J 350 < m_{JJ} < 700, 0 < p_{T}^{H} < 200		0.79	+0.73 -0.65	(+0.62 (_{-0.56} ,	+0.38 -0.32
qq→Hqq ≥2J m _{JJ} > 700, 0 < p _T ^H < 200	li in the second	1.09	+0.35 -0.31	(+0.28 -0.26 ,	+0.21 -0.17
qq→Hqq ≥2J m _{JJ} > 350, p _T ^H > 200		1.35	+0.46 -0.40	+0.41 (_{-0.36} ,	+0.20 -0.17
qq→Hlv 0 < p _t ^V < 150		2.41	+0.71 -0.70 (± 0.67,	+0.22
$qq \rightarrow Hlv p_t^V > 150$		2.64	+1.16 -0.99	+1.14 (_{-0.97} ,	+0.19
HII 0 < p_t^V < 150		-1.08	+0.99 -0.87	(<mark>+0.96</mark> (_{-0.85} ,	+0.26 -0.20
HII $p_t^V > 150$		-0.10	+1.11 -0.93	(+1.10 (_{-0.91} ,	+0.16
tH 0 < p_T^H < 60		0.76	+0.83 -0.70	+0.80 (_{-0.68} ,	+0.21 -0.17
$tH 60 < p_{T}^{H} < 120$	•	0.72	+0.54 -0.46	(+0.53 (_{-0.46} ,	+0.10 -0.08
tH 120 < p _T ^H < 200		1.06	+0.63 -0.54	(+0.61 (_{-0.52} ,	+0.17 -0.14
tH $p_T^H > 200$		0.96	+0.53 -0.46	+0.52 (_{-0.45} ,	+0.12
······································		0.85	+3.28	+3.13	+0.97

10

ATLAS

Eleonora Rossi

CAPP

Enigmass

$H \rightarrow \gamma \gamma$: STXS cross sections

- Large uncertainties occur in particular in regions of high p_T^H and p_T^V , as well as the low- m_{jj} regions of $qq' \rightarrow Hqq'$.
- The systematic component of uncertainties is smaller than the statistical component (similar values for the 0-jet regions of $gg \rightarrow H$).
- No significant deviations from the SM expectation are observed-> compatibility between the measurements and the SM predictions corresponds to a p-value of 60%.

• An upper limit of ~8x SM prediction on tH production.

	<u></u>				
ATLAS Preliminary	🕂 Total 📃 Stat	. 🗖 Syst. 📕 SN	/		
VS = 13 TeV, 139 ID H $\rightarrow _{VV}$ m = 125.09 GeV			Total	Stat. S	Syst.
gg→H 0J 0 < p ^H 10		0.76	+0.31	(± 0.26,	+0.18
' gg→H 0J p _T ^H > 10		1.17	+0.20) (± 0.15.	+0.13
' gg→H 1J 0 < p ₊ ^H < 60		0.91	+0.19	(± 0.40.	+0.19
' gg→H 1J 60 < p ₊ ^H < 120		1.18	-0.43 +0.39	` (± 0.37,	+0.15
' gg→H 1J 120 < p _T ^H < 200		0.70	-0.37 ± 0.52	(± 0.50	-0.06 / +0.11
gg→H ≥2J 0 < m _{JJ} < 350, 0 < p _T ^H < 60		0.47	+1.28	, +1.16	+0.55
gg→H ≥2J 0 < m _{JJ} < 350, 60 < p _T ^H < 120		0.28	± 0.59	+0.57	+0.13
gg→H ≥2J 0 < m _{JJ} < 350, 120 < p _T ^H < 200		0.60	+0.48	(± 0.45,	+0.17
gg→H ≥2J m _{JJ} > 350, 0 < p _T ^H < 200		2.25	+0.99	+0.88	+0.47
$\int gg \rightarrow H 200 < p_T^H < 300$	nevertette zurantettettettettettettettettettettettettet	1.00	+0.40	+0.38	+0.13
gg→H 300 < p_T^{H} < 450		0.20	+0.57	(+0.55 (-0.49,	+0.14
$gg \rightarrow H p_T^H > 450$		1.64	+1.45	+1.44	+0.17
qq→Hqq ≤ 1J		1.55	+1.23	+1.15	+0.44 -0.38)
qq→Hqq ≥2J 0 < m _{JJ} < 60 ll 120 <m<sub>JJ < 350</m<sub>		3 .16	+1.84	(^{+1.70} (-1.62,	+0.71 -0.57)
qq→Hqq ≥2J 60 < m _{JJ} < 120		0.76	+0.95	+0.91	+0.25
qq→Hqq ≥2J 350 < m_{JJ} < 700, 0 < p_{T}^{H} < 200		0.79	+0.73 -0.65	+0.62 (_{-0.56} ,	+0.38 -0.32)
qq→Hqq ≥2J m _{JJ} > 700, 0 < p _T ^H < 200		1.09	+0.35 -0.31	(^{+0.28} (_{-0.26} ,	+0.21 -0.17)
qq→Hqq ≥2J m _{JJ} > 350, p _T ^H > 200		1.35	+0.46 -0.40	(+0.41 (_{-0.36} ,	+0.20 -0.17)
$qq \rightarrow Hlv \ 0 < p_t^V < 150$		2.41	+0.71 -0.70 (± 0.67,	+0.22 -0.19)
$qq \rightarrow Hlv p_t^V > 150$		2.64	+1.16 -0.99	(+1.14 (_{-0.97} ,	+0.19 -0.17)
HII 0 < p _t ^V < 150	I	-1.08	+0.99 -0.87	(^{+0.96} (_{-0.85} ,	+0.26 -0.20)
$HII p_t^V > 150$		-0.10	+1.11 -0.93	(+1.10 (-0.91 ,	+0.16 -0.19)
$ttH 0 < p_T^H < 60$		0.76	+0.83 -0.70	(<mark>+0.80</mark> (_{-0.68} ,	+0.21 -0.17)
$ttH 60 < p_T^H < 120$		0.72	+0.54 -0.46	+0.53 (_{-0.46} ,	+0.10 -0.08)
ttH 120 < p_T^H < 200		1.06	+0.63 -0.54	(+0.61 (_{-0.52} ,	+0.17 -0.14)
ttH $p_T^H > 200$		0.96	+0.53 -0.46	(+0.52 (_{-0.45} ,	+0.12 -0.10)
tH -		0.85	+3.28 -2.41	(+0.97 -0.98)
					ш
-4 -2 ATIA			6	σ^{γ}	$\frac{8}{\gamma/\sigma_{\rm opt}^{\gamma\gamma}}$
AILA	<u>3-00NF-</u>	2020-02	0		SM

Eleonora Rossi

- Two complementary approaches exploited to measure the Higgs cross sections in diphoton decay channel:
 - all results in agreement with the SM predictions;
 - interpretations provided in the context of EFT theories for fiducial differential results;
 - differential cross-section as a function $p_T^{\gamma\gamma}$ used to probe the charm Yukawa coupling of the Higgs boson.
 - STXS cross-sections in 27 regions of Higgs boson production phase space;
 - STXS: upper limit of ~8x SM prediction on tH production.
- Still room to improve full Run 2 results -> results for both fiducial differential and STXS measurement coming soon (including EFT and kappa interpretations).

Eleonora Rossi

Thank you for your attention

4 APP $H \rightarrow \gamma \gamma$: differential and fiducial cross sections

[fb]

Ratio to default pred.

10²

- The distributions are compared to the state-of-the art theory predictions and used for the interpretations.
- Comparisons in exclusive and inclusive bins.
- Agreement is observed between the measured N_{jets} distributions and all predictions with precision better than NLO (N³LO normalisation improves the agreement).
- Systematic uncertainties having the largest impact (6%-25%) are the jet energy scale and resolution.
- The $|y_{\gamma\gamma}|$ distribution is conspared to scent the set of th which provides predictions for at NNL out out the scent and the accuracy, derived by applying a resummation veof ++ the+ virtual corrections to the gluon form factor.
- The diphoton rapidity distribution is sensitive to the gluon distribution.

Ratio t

• Good agreement is observed over the full rapidity range.

Eleonora Rossi

300

200

100

150

250

 $APP H \rightarrow \gamma\gamma$: differen

which is within one standard deviatio 63.6 ± 3.3 fb (arXiv: 1610.07922).

EPS-HEP 2021, 26/07/2021

• The uncertainty of the fiducial measurement is equally affected by statistical and systematic uncertainties; when splitting in bins for the differential measurements, the statistical uncertainties dominate.

50

100

150

200

• The systematics associated to the signal extraction (background modelling and photon energy resolution) are typically larger than those on the correction factors, except for measurements with $N_{jets} > 1$ where the impact of jet energy scale and resolution uncertainties on the correction factor become equally significant.

Eleonora Rossi

 $H \rightarrow \gamma \gamma$, $\sqrt{s} = 13$ TeV, 139 fb⁻¹, $m_H = 125.09$ GeV

 $p_{\tau}^{\gamma\gamma}$ [GeV]

350

250

ATLAS-CONF-2019-029

APP Anomalous Higgs-boson interactions through EFT

ATLAS-CONF-2019-029

- The impact of the \tilde{c}_g and \tilde{c}_g coefficients is mainly on ggF, giving a large change in the overall cross-section normalisation; the \tilde{c}_g coefficient also changes the shape of the $\Delta \phi_{jj}$ distribution.
- The impact of the c_{HW} c_{HB} and their CP-odd counterparts is mainly on VBF+VH production (large shape changes in all of the distributions). $s_{g1.7}^{1.8}$ ATLAS Simulation Preliminary $H \rightarrow \gamma\gamma$, $\sqrt{s} = 13 \text{ TeV}$
- SILH SILH **₽1.6**Ē SILH SILH • The $\Delta \phi_{ii}$ distribution discriminate $\tilde{a}_{1.5}$ $\overline{c}_{HW} = \overline{c}_{HB} = 0.03$ $\widetilde{c}_{HW} = \widetilde{c}_{HB} = 0.07$ $\overline{c}_{a} = 2.4 \times 10^{-5}$ $\tilde{c}_{z} = 1 \times 10^{-4}$ between CP-even and CP-odd $- \overline{c}_{y} = -9.0 \times 10^{-5}$ $\tilde{c}_{...} = -4.0 \times 10^{-4}$ 1.3 1.3 interactions in VBF production. 0.9 0.9 0.8 0.8 $p_{-}^{\gamma\gamma}$ [GeV] *m*_{ii} [GeV] ρ_^{γγ} [GeV] • The \overline{C}_{HG} and \overline{C}_{HG} coefficients Ratio to SM Ratio to SN affect ggF production. 1.8 **ATLAS** Simulation Preliminary $H \rightarrow \gamma \gamma$, $\sqrt{s} = 13$ TeV-**ATLAS** Simulation Preliminary $H \rightarrow \gamma \gamma$, $\sqrt{s} = 13 \text{ Te}^3$ 1.8 SMEFT (Interference-only) SMEFT (Interference-only) • \bar{C}_{HR} , \bar{C}_{HW} and their CP-odd 1.6 $-\overline{C}_{HG} = 4.5 \times 10^{-4}$ $\overline{C}_{HB} = -2.3 \times 10^{-4}$ $-\widetilde{C}_{HG} = 1.8 \times 10^{-2}$ $- \widetilde{C}_{HB} = -13$ 1.6 $-\widetilde{C}_{HWB} = -8.8$ $-\widetilde{C}_{HW} = -2.9 \times 10^{-1}$ $\overline{C}_{HW} = -7.8 \times 10^{-4}$ $\overline{C}_{HWB} = -4.2 \times 10^{-4}$ counterparts affect VBF+VH 1.4 1.4 SMEF¹ production; the main effect of $C_{HB_{\mu}}$ 1.2 1.2 \overline{C}_{HW} and \overline{C}_{HWB} is on the $H \to \gamma \overline{\gamma}$ SMEF decay rate; 0.8 0.8 • The CP-odd coefficients exhibit 0.6^{1} 0.6 sensitivity only to the $\Delta \phi_{ii}$ p^{YY} [GeV] p^{YY} [GeV] [GeV] p_1 [GeV] observable.

Enigma S The enigma of mass

Eleonora Rossi

- Dimension-6 operators are considered (dim-5 and dim-7 operators excluded -> lepton and baryon number conservation + dim-8 are neglected-> further suppressed by $1/\Lambda^2$).
- The differential $H \rightarrow \gamma \gamma$ cross sections are sensitive to operators that affect the Higgs-boson interactions with gauge bosons (5 differential distributions). $\mathcal{L}_{\mathrm{eff}}^{\mathrm{SILH}} \supset$ $\overline{c}_g O_g + \overline{c}_\gamma O_\gamma + \overline{c}_{HW} O_{HW} + \overline{c}_{HB} O_{HB}$ $d(\sigma \times BR)/dx, x = p_T^{\gamma\gamma}, N_{jets}, p_T^{j1}, m_{jj}, \Delta \varphi_{jj}$ • Two different EFT basis have been used:
- - the SILH basis of the Higgs Effective Lagrangian;
 - the Warsaw basis of the SMEFT Lagrangian.

- The contributions to the cross section can be separated into components for the SM, BSM and SM-BSM interference: $\sigma \propto |\mathcal{M}_{\rm EFT}|^2 = |\mathcal{M}_{\rm SM}|^2 + |\mathcal{M}_{\rm d6}|^2 + 2Re(\mathcal{M}_{\rm SM}^*\mathcal{M}_{\rm d6})$
- Limits on Wilson coefficients are set by building a likelihood function:

$$\mathcal{L} = \frac{1}{\sqrt{(2\pi)^k |C|}} \exp\left(-\frac{1}{2} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{pred}}\right)^T C^{-1} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{pred}}\right)\right)$$

- $\vec{\sigma}_{data}$ and $\vec{\sigma}_{pred}$ are k-dimensional vectors from the measured and predicted differential cross sections of the five analysed observables;
- $C = C_{stat} + C_{syst} + C_{theo}$ is the total covariance matrix.

Enigmass EPS-HEP 2021, 26/07/2021

Eleonora Rossi

Experimental evidence for Higgs boson couplings to the second generation quarks has not yet been found.

Limits on the c-quark Yukawa coupling

- Indirect approach: use the sensitivity of the Higgs boson $p_T^{\gamma\gamma}$ spectrum to the Yukawa couplings of the Higgs boson to the *c* (and *b*-> *not competitive with the direct observation*).
 - A modification in the coupling strength would impact:
 - ◆ the ggF (gg → H) and quark-initiated production (cc̄ → H), affecting both the normalisation and the shape of the $p_T^{\gamma\gamma}$ spectrum (impact on the acceptance found to be negligible);
 - ◆ the branching ratio for the *H* → *γγ* decay (not used to set limits).
- The differential cross section is used in the range of $p_T^{\gamma\gamma}$ [0-140] GeV which is the region most sensitive to variations of κ_c .
- Limits on κ_c at 95% CL are $-19 < \kappa_c < 24$ (obs)- shape only.

ATLAS-CONF-2019-029

Eleonora Rossi

$H \rightarrow \gamma \gamma$: inclusive cross sections

- ggF and VBF:
 - ◆ statistical ≈ systematic uncertainty;
 - Iargest systematics:
 - ggF: background modelling (4.1%),
 - VBF: signal modelling (10%).
- Given the large observed correlation between the measurements of *WH* and *ZH* cross-sections, a total cross-section for the *WH* and *ZH* production processes is measured: $\sigma_{VH,exp} = 4.53 \pm 0.12$ fb.
- SM compatibility of 5-POI fit: p-value = 3% (1.9 σ deviation).

$H \rightarrow \gamma \gamma$: inclusive cross sections

- ggF and VBF:
 - ◆ statistical ≈ systematic uncertainty;
 - Iargest systematics:
 - ggF: background modelling (4.1%),
 - VBF: signal modelling (10%).
- Given the large observed correlation between the measurements of *WH* and *ZH* cross-sections, a total cross-section for the WH and ZH production processes is measured: $\sigma_{VH,exp} = 4.53 \pm 0.12$ fb.
- SM compatibility of 5-POI fit: p-value = 3% (1.9 σ deviation).

	ggF+ bbH	VBF	WH	ZH	$t\bar{t}H + tH$
Uncertainty source	$\Delta\sigma$ [%]	$\Delta\sigma$ [%]	$\Delta \sigma$ [%]	$\Delta\sigma$ [%]	$\Delta\sigma$ [%]
Underlying Event and Parton Shower (UEPS)	±2.3	±10	< ±1	±9.6	±3.5
Modeling of Heavy Flavor Jets in non- $t\bar{t}H$ Processes	< ±1	< ±1	< ±1	< ±1	±1.3
Higher-Order QCD Terms (QCD)	±1.6	< ±1	< ±1	±1.9	< ±1
Parton Distribution Function and α_S Scale (PDF+ α_S)	< ±1	±1.1	< ±1	±1.9	< ±1
Photon Energy Resolution (PER)	±2.9	± 2.4	±2.0	±1.3	±4.9
Photon Energy Scale (PES)	< ±1	< ±1	< ±1	± 3.4	±2.2
$\text{Jet}/E_{\text{T}}^{\text{miss}}$	±1.6	±5.5	±1.2	±4.0	±3.0
Photon Efficiency	±2.5	±2.3	±2.4	±1.4	± 2.4
Background Modeling	±4.1	±4.7	±2.8	±18	± 2.4
Flavor Tagging	< ±1	< ±1	< ±1	< ±1	< ±1
Leptons	< ±1	< ±1	< ±1	< ±1	< ±1
Pileup	±1.8	±2.7	±2.1	± 3.8	±1.1
Luminosity and Trigger	±2.1	±2.1	±2.3	±1.1	±2.3
Higgs Boson Mass	< ±1	< ±1	< ±1	±3.7	±1.9

ATLAS-CONF-2020-026

Eleonora Rossi

$H \rightarrow \gamma \gamma$: STXS cross sections

Training variables used for the BDTs

STXS regions	Multi-class BDT	STXS regions	Binary BDT	💈 📮 🔚 📩 Signal selected 🛛 ATLAS Simulation Preliminary 🔄
gg ightarrow H	di-photon $p_{\rm T}$ and absolute rapidity;	individual STXS regions from	Multi-class BDT variables, and $\Delta \phi$, $\Delta \eta$ between the 2 photons ($\Delta \phi_{\gamma\gamma}$, $\Delta \eta_{\gamma\gamma}$); Number of electrons and muons; $E_{\rm T}^{miss}$, $\Sigma E^{\rm T}$, $E_{\rm T}^{miss}$ significance, and $E_{\rm T}^{miss}$ azimuthal angle computed from hardest vertex;	Signal rejected Other processes $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}, H \rightarrow \gamma \gamma$ $gg \rightarrow H (1-jet, 120 \le p_{\tau}^{H} \le 200 \text{ GeV})$ 10^{-1} 10^{-2}
	di inter anno Au At An botton an the Distor	$gg \rightarrow H \text{ or}$	$\gamma \gamma \mathbf{p}_{T}$ projected to its thrust axis $(p_{T}^{\gamma \gamma})$:	
	di-jet $p_{\rm T}$, mass, Δy , $\Delta \phi$, $\Delta \eta$ between the 2 jets;	$qq' \rightarrow Hqq'$		
	$p_{\rm T}$, mass of $\gamma\gamma + j$ and $\gamma\gamma + jj$,		Half difference between di-photon η and sum η of leading 2 jets (η^{2epp});	0 0.2 0.4 0.6 0.8 1 1.2 1.4
$qq' \rightarrow Hqq'$	$\Delta y, \Delta \phi$ between $\gamma \gamma$ and jj ,		$\phi_{\gamma\gamma}^* = \tan(\frac{\pi - \Delta\phi_{\gamma\gamma} }{2})\sqrt{1 - \tanh^2(\frac{\Delta\eta_{\gamma\gamma}}{2})}$	Multiclass BDT output
	minimum ΔR between jets and photons,		$\cos\theta_{\gamma\gamma}^{*} = \frac{(E^{\gamma_{1}} + p_{z}^{\gamma_{1}}) \cdot (E^{\gamma_{2}} - p_{z}^{\gamma_{2}}) - (E^{\gamma_{1}} - p_{z}^{\gamma_{1}}) \cdot (E^{\gamma_{2}} + p_{z}^{\gamma_{2}})}{m_{\gamma\gamma} + \sqrt{(m_{\gamma\gamma}^{2} + (p_{T}^{\gamma\gamma})^{2})}} $	
	mass of the sum of all jets;			
	di-lepton $p_{\rm T}$, di-e or di- μ mass,	WH		
	$E_{\rm T}^{miss}$, $p_{\rm T}$ of lepton + $E_{\rm T}^{miss}$;		$p_{\rm T}/m_{\gamma\gamma}, \eta, \phi$ of 2 leading photons;	$\sqrt{5}$ 0.1 $\sqrt{5}$ = 13 TeV, 139 fb ⁻¹ , H $\rightarrow\gamma\gamma$
$qq \to H\ell\nu$	p_T , η , ϕ , mass of top candidates;	STXS regions combined	$p_{\rm T}, \eta, \phi$ of 2 leading leptons;	$gg \rightarrow H (1-jet, 120 \le p_T^H < 200 \text{ GeV})$ $gg \rightarrow 0.08$
	Number of jets, barrel jets ($ \eta < 2.5$), b-jets and leptons;		$E_{\rm T}^{mass}$, $E_{\rm T}^{mass}$ significance, $E_{\rm T}^{mass}$ azimuthal angle;	Ú ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
	leading jet p_T , sum p_T of all jets		Whether or not the $E_{\rm T}^{miss}$ built from di-photon vertex is	
	$\Sigma D^{T} D^$	ZH STVS regions	larger than that built from the hardest vertex	
$qq \rightarrow mu$	ΣE , $E_{\rm T}$ significance;	combined	by more than 50 Gev,	
	Average interaction per crossing, number of primary vertices		di-lepton mass, and transverse mass of lepton + $E_{\rm T}^{miss}$	0.02
			$p_{\rm T}, \eta, \phi$ of 2 leading photons;	
ŧŦĦ		tTH STXS regions	$p_{\rm T}$, η , ϕ and B-tagging scores of 6 leading jets;	°0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1		combined	E_T^{miss}, E_T^{miss} significance, E_T^{miss} azimuthal angle:	BDT sco
			Top reconstruction BDT scores	
tH		tWH, tHqb		

Eleonora Rossi

Event fraction

0.35

0.3

0.25

02

ATL

