Imperial College London



## Measurements of Higgs boson cross sections and differential distributions in bosonic final states at the CMS experiment

J. Langford

On behalf of the CMS Collaboration

## **EPS 2021**

### Introduction

• Bosonic final states provide clean signatures for precision measurements



- Measured four dominant production modes with  $>5\sigma$  sensitivity
  - wealth of Run 2 data permits measurements in different kinematic regions
    - $\Rightarrow$  sensitive to new physics affecting shape of Higgs boson distributions
    - $\Rightarrow$  STXS vs fiducial differential  $\frown$  Back-up
  - + rarer processes e.g. single-top production (tH)
- Most recent cross section measurements by CMS in bosonic final states
  - ▶ all based on 137 fb<sup>-1</sup> of p-p collision data collected during Run 2 (2016-2018)
  - signal strengths,  $\kappa$ 's etc covered in talk by Ulascan



#### $H \rightarrow \gamma \gamma$ : overview

- $\bullet$  Small branching fraction:  ${\sim}0.2\%$
- Clean, fully-reconstructed final state of two isolated photons
  - benefit from excellent diphoton mass resolution: 1-2%
- Measure cross sections in kinematics bins of the **STXS** framework (stage 1.2)
  - ► sensitive to all major Higgs production modes: ggH, VBF + VH had, VH lep, ttH, tH
  - $\sigma \cdot \mathcal{B}$  extracted in fit to diphoton invariant mass spectrum  $(m_{\gamma\gamma})$



#### $H \rightarrow \gamma \gamma$ : analysis strategy

- Construct orthogonal event categories enriched in events from kinematic bins
  - Isolate events from given H production mode: ggH, VBF, VH, ttH, tH ⇒ requires tagging on additional objects: jets, charged leptons, MET
  - Split events into kinematic regions. Either...
    - $\Rightarrow$  aligning cuts on equivalent reco-level quantities e.g.  $p_T^{\gamma\gamma} \Leftrightarrow p_T^H$
    - $\Rightarrow$  ggH: multiclass BDT to predict kinematic bin  $\Rightarrow$  reduces correlations!
  - Surplus Further improve S-vs-B discrimination with dedicated BDTs/DNNs



### $H \rightarrow \gamma \gamma$ : analysis strategy

- Construct orthogonal event categories enriched in events from kinematic bins
  - Isolate events from given H production mode: ggH, VBF, VH, ttH, tH ⇒ requires tagging on additional objects: jets, charged leptons, MET
  - Split events into kinematic regions. Either...
    - $\Rightarrow$  aligning cuts on equivalent reco-level quantities e.g.  $p_T^{\gamma\gamma} \Leftrightarrow p_T^H$
    - $\Rightarrow$  ggH: multiclass BDT to predict kinematic bin  $\Rightarrow$  reduces correlations!
  - **9** Further improve S-vs-B discrimination with dedicated BDTs/DNNs



### ${\rm H}{\rightarrow}\,\gamma\gamma$ : analysis strategy

- Construct orthogonal event categories enriched in events from kinematic bins
  - Isolate events from given H production mode: ggH, VBF, VH, ttH, tH ⇒ requires tagging on additional objects: jets, charged leptons, MET
  - Split events into kinematic regions. Either...
    - $\Rightarrow$  aligning cuts on equivalent reco-level quantities e.g.  $p_T^{\gamma\gamma} \Leftrightarrow p_T^H$
    - $\Rightarrow$  ggH: multiclass BDT to predict kinematic bin  $\Rightarrow$  reduces correlations!
  - **9** Further improve S-vs-B discrimination with dedicated BDTs/DNNs



\* bad data/MC agreement does not matter: bkg modeled directly from data

### ${\rm H}{\rightarrow}\,\gamma\gamma$ : analysis strategy

- Construct orthogonal event categories enriched in events from kinematic bins
  - Isolate events from given H production mode: ggH, VBF, VH, ttH, tH ⇒ requires tagging on additional objects: jets, charged leptons, MET
  - Split events into kinematic regions. Either...
    - $\Rightarrow$  aligning cuts on equivalent reco-level quantities e.g.  $p_T^{\gamma\gamma} \Leftrightarrow p_T^H$
    - $\Rightarrow$  ggH: multiclass BDT to predict kinematic bin  $\Rightarrow$  reduces correlations!
  - S Further improve S-vs-B discrimination with dedicated BDTs/DNNs



\* bad data/MC agreement does not matter: bkg modeled directly from data



CMS Experiment at the LHC, CERN Data recorded: 2018-Aug-04 19:53:53.824320 GMT Run / Event / LS: 320840 / 142108814 / 87

#### A tHq candidate event

### ${\rm H}{\rightarrow}\,\gamma\gamma$ : extracting the results

- Simultaneous binned likelihood fit to  $m_{\gamma\gamma}$  spectrum in 80 event categories
  - S: from simulation, model each (STXS bin, category, data-taking year) separately
  - B: from data, discrete profile likelihood method



### ${\rm H}{\rightarrow}\,\gamma\gamma$ : extracting the results

- Likelihood:  $\mathcal{L} = \prod_{j=\text{cat}} \prod_{m_{\gamma\gamma}} \text{Poisson}(n | \sum_i s_{ij}(\theta) \mu_i + b_j) \cdot \mathcal{C}(\theta)$ 
  - Systematics: InN nuisance params  $(\theta)$  affecting shape and norm of signal
  - unfold confusion matrix (i.e. the detector)  $\Rightarrow$  measure  $\sigma \cdot B$  (truth) in 27 bins



J. Langford

### ${\rm H}{\rightarrow}\,\gamma\gamma\,:\,{\rm results}$

- One of most granular H cross section measurements to-date
  - overall good agreement with SM: global p-value of 70%
  - cross section measurements also provided in coarser kinematic binning Maximal



### ${\rm H}{\rightarrow}\,\gamma\gamma:\,{\rm results}$

- ggH high  $p_T^H$  region particularly sensitive to BSM physics
  - ▶ (200 <  $p_T^H$  < 300 GeV) region measured with high precision (±40%)
  - uncertainties comparable to theory uncertainty in SM prediction!



#### Correlations between params

### ${\rm H}{\rightarrow}\,\gamma\gamma\,:\,{\rm results}$

- $\bullet\,$  First published measurement of ttH production in kinematic bins
- $\bullet$  Observe excess in single-top production:  $1.6\sigma$  w.r.t. SM prediction
  - competitive upper limit of tH: 14 (8)  $\times$  SM @ 95% C.L.



#### Correlations between params

### ${\rm H}{\rightarrow}\,\gamma\gamma\,:\,{\rm results}$

- First published measurement of ttH production in kinematic bins
- Observe excess in single-top production: 1.6 $\sigma$  w.r.t. SM prediction
  - competitive upper limit of tH: 14 (8)  $\times$  SM @ 95% C.L.



### ${\rm H}{\rightarrow}\,\gamma\gamma:\,{\rm results}$

- $\bullet\,$  Significantly improved results with respect to previous  ${\rm H}{\rightarrow}\,\gamma\gamma$  analyses
  - larger statistics, improved analysis techniques, reduced systematics
  - ▶ STXS stage 1.2  $\sigma \cdot B$  remain statistically limited: room for improvement!





J. Langford

### $H \rightarrow ZZ^* \rightarrow 4\ell$ : overview

- Low  ${\cal B}$  fraction (0.012%) compensated by fully reconstructed final state
  - provides extremely high S/B with which to perform precision measurements
  - + access to full Higgs boson kinematics
- Decay channels: 4e, 4 $\mu$ , 2e2 $\mu$ 
  - group same-flavour opposite-charge leptons
  - ▶ build Z candidates:  $12 < m_{\ell\ell(\gamma)} < 120 \text{ GeV}$
  - apply series of Selection cuts
- Dominant bkgs: non-resonant ZZ/Z $\gamma$ 
  - shape and norm from MC simulation
  - also triboson, ttV, ttVV from simulation
  - subdominant component from misidentified leptons in Z+jets, tt+jets etc.
  - estimated from dedicated control regions
- STXS + Fiducial differential cross sections
  - ► targeted prod modes: ggH, qqH, VH lep, ttH



### $H{\rightarrow}ZZ^* \rightarrow 4\ell$ : STXS analysis strategy

- <u>MELA</u>: construct matrix-element based kinematic discriminants,  $\mathcal{D}$ 
  - Categorisation: split events into mutually exclusive production mode categories
    - $\Rightarrow$  e.g.  $\mathcal{D}_{\rm 2jet}^{\rm VBF}$  isolate VBF 2-jet events
    - $\Rightarrow$  split production mode categories into 22 kinematic regions: STXS
    - $\Rightarrow$  using equivalent reco quantities e.g.  $p_{T}^{4\ell} \Leftrightarrow p_{T}^{H}$
  - **2** <u>Kinematic</u>: separate  $H \rightarrow 4\ell$  signal from SM background processes

 $\Rightarrow \mathcal{D}_{\rm bkg}^{\rm kin}/\mathcal{D}_{\rm bkg}^{\rm VBF+dec}/ \ \mathcal{D}_{\rm bkg}^{\rm VH+dec} \text{ used along with } m_{4\ell} \text{ as fitting observables}$ 



### $H{\rightarrow}ZZ^* \rightarrow 4\ell$ : STXS analysis strategy

- <u>MELA</u>: construct matrix-element based kinematic discriminants,  $\mathcal{D}$ 
  - Categorisation: split events into mutually exclusive production mode categories
    - $\Rightarrow$  e.g.  $\mathcal{D}_{2jet}^{VBF}$  isolate VBF 2-jet events
    - $\Rightarrow$  split production mode categories into 22 kinematic regions: STXS
    - $\Rightarrow$  using equivalent reco quantities e.g.  $p_{T}^{4\ell} \Leftrightarrow p_{T}^{H}$
  - 2 Kinematic: separate  $H \rightarrow 4\ell$  signal from SM background processes

 $\Rightarrow \mathcal{D}_{\rm bkg}^{\rm kin}/\mathcal{D}_{\rm bkg}^{\rm VBF+dec}/ \ \mathcal{D}_{\rm bkg}^{\rm VH+dec} \text{ used along with } m_{4\ell} \text{ as fitting observables}$ 



### $H \rightarrow ZZ^* \rightarrow 4\ell$ : STXS results

- Two-dimensional likelihood fit in  $(m_{4\ell}, \mathcal{D}_{\mathrm{bkg}})$  in all 22 analysis categories
  - $\mathcal{P}(m_{4\ell})$ : unbinned analytic model for each (STXS bin, category, decay channel)
  - $\mathcal{P}(\mathcal{D}_{\mathrm{bkg}}|m_{4\ell})$ : binned template, conditional on value of  $m_{4\ell}$
  - $\blacktriangleright$   $\bigcirc$  Systematic included which affect shape and normalisation of S + B models
- Use likelihood to unfold  $\sigma \cdot B$  in 19 independent kinematic regions  $\bullet$  Merging scheme
  - again good agreement with SM, stat uncertainties dominate



### $H \rightarrow ZZ^* \rightarrow 4\ell$ : STXS results

- Two-dimensional likelihood fit in  $(m_{4\ell}, \mathcal{D}_{bkg})$  in all 22 analysis categories
- Use likelihood to unfold  $\sigma \cdot \mathcal{B}$  in 19 independent kinematic regions lacksquare Merging scheme
  - ▶ again good agreement with SM, stat uncertainties dominate





J. Langford

## $H \rightarrow WW^*$ : fiducial differential overview

- Leptonic final state has best sensitivity with decent  $\mathcal{B}$  fraction (1%)
  - WW\*  $\rightarrow e\nu\mu\nu$  channel only: suppress Drell-Yan bkg Selection criteria
  - but neutrinos! cannot fully reconstruct kinematics
- Bkg: non-res WW and tt (dominant)
  - MC simulation, norm from data ►
  - + (data-driven) mis-identified leptons,  $DY(\tau\tau)$ , Diboson/Triboson (small)
- Fiducial cross section measurement
  - differential in  $p_T^H$  and  $N_{iet}$
  - larger migrations due to  $p_T^{\text{miss}}$ ►
- 2D likelihood fit in  $(m_{\ell\ell}, m_T^H)$ 
  - S + B templates per differential bin
  - S also split by truth-level bin
    - $\Rightarrow$  unfold response of detector in fit



137 fb<sup>-1</sup> (13 TeV)

## $H{\rightarrow}WW^*$ : fiducial differential results

- Regularization for  $p_T^H$  fit: smooths measured distribution  $\bigcirc$  Details
  - reduces · Correlations between measured cross sections
- $\bullet$  Good agreement with  $\operatorname{PowHeG}$  (v2) and  $\operatorname{MG5@NLO}$  predictions



• Uncertainties: stat. and (experimental) syst components comparable in size

- ▶ (both) grow with increasing  $p_T^H$  (total: 20→85%) and  $N_{\rm jet}$  (total: 15→90%)
- inclusive  $\sigma_{\rm fid}$  is syst limited:  $\sigma_{\rm fid}/\sigma_{\rm fid}^{\rm SM} = 1.05 \pm 0.05({\rm stat.}) + 0.08({\rm exp.}) + 0.07({\rm th.})$

J. Langford

### $H \rightarrow WW^*$ : via VH production

- Final states in which V (+ at least one W) decays leptonically
  - WHSS:  $2\ell 2\nu qq$ , WH3 $\ell$ :  $3\ell 3\nu$ , ZH3 $\ell$ :  $3\ell\nu qq$ , ZH4 $\ell$ :  $4\ell 2\nu$
- Measure inclusive + VH lep STXS using dedicated approach in each channel
  - ▶ baseline selection  $\Rightarrow$  event categorisation + data control regions
  - ▶ split categories into four kinematic bins by reconstructed  $p_T^V$
  - simultaneous binned template fit:  $\tilde{m}_H$  or BDT (depends on channel)



### $H{\rightarrow}WW^*$ : via VH production

- Final states in which V (+ at least one W) decays leptonically
  - WHSS:  $2\ell 2\nu qq$ , WH3 $\ell$ :  $3\ell 3\nu$ , ZH3 $\ell$ :  $3\ell \nu qq$ , ZH4 $\ell$ :  $4\ell 2\nu$
- Measure inclusive + VH lep STXS using dedicated approach in each channel
  - baseline selection  $\Rightarrow$  event categorisation + data control regions
  - ▶ split categories into four kinematic bins by reconstructed  $p_T^V$
  - simultaneous binned template fit:  $\tilde{m}_H$  or BDT (depends on channel)



### $H{\rightarrow}WW^*$ : via VH production

- $\bullet\,$  Final states in which V (+ at least one W) decays leptonically
  - WHSS:  $2\ell 2\nu$ qq, WH3 $\ell$ :  $3\ell 3\nu$ , ZH3 $\ell$ :  $3\ell\nu$ qq, ZH4 $\ell$ :  $4\ell 2\nu$
- Measure inclusive + VH lep STXS using dedicated approach in each channel
  - ▶ baseline selection  $\Rightarrow$  event categorisation + data control regions
  - split categories into four kinematic bins by reconstructed p<sup>V</sup><sub>T</sub>
  - simultaneous binned template fit:  $\tilde{m}_H$  or BDT (depends on channel)



• No significant deviation from SM, uncertainties are large

J. Langford

### Summary

- During Run 2 we have entered precision era of Higgs physics
  - opened up possibility to measure H production in different kinematic regions
  - + can target rarer processes e.g. tH
- $\bullet$  Covered most recent CMS H cross section measurements:  $\gamma\gamma$  , ZZ, WW
  - all based on full Run 2 dataset (137 fb<sup>-1</sup>)
  - STXS and fiducial differential cross sections
  - ▶ in agreement with SM <u>but</u> uncertainties still large in places
- As Run 3 approaches: must continue effort to pin down the Higgs sector
  - leave no stone/region of phase space unturned



# Back-Up Slides

### Simplified template cross sections

• Mantra: optimised for sensitivity, whilst minimising theory dependence



• Events split by production then by (truth) kinematics:  $p_T^H$ ,  $N_{jet}$ ,  $m_{jj}$ ,  $p_T^V$ ,  $p_T^{Hjj}$ 

- bin boundaries chosen according to theory modeling / sensitivity / isolate BSM
- evolves in stages of increasing granularity: currently stage 1.2
- no selection on H decay products: enables combination across channels
- more sophisticated analysis techniques permitted e.g. BDT, DNN, ...

## Fiducial (differential) cross sections

• Mantra: optimised for theory/model independence



| Observable                            | Condition                                 |
|---------------------------------------|-------------------------------------------|
| Lepton origin                         | Direct decay of $H \rightarrow W^+W^-$    |
| Lepton flavors; lepton charge         | $e\mu$ (not from $\tau$ decay); opposite  |
| Leading lepton $p_T$                  | $p_{T}^{l_{1}} > 25 \text{GeV}$           |
| Trailing lepton $p_T$                 | $p_T^{l_2} > 13 \text{GeV}$               |
| $ \eta $ of leptons                   | $ \eta  < 2.5$                            |
| Dilepton mass                         | $m^{ll} > 12 \text{GeV}$                  |
| $p_{\rm T}$ of the dilepton system    | $p_{\mathrm{T}}^{ll} > 30 \mathrm{GeV}$   |
| Transverse mass using trailing lepton | $m_T^{l_2} > 30 \text{GeV}$               |
| Higgs boson transverse mass           | $m_{\rm T}^{\rm \hat{H}} > 60  {\rm GeV}$ |

• Define fiducial phase space (truth) to closely match experimental phase space

- reduces extrapolation into phase space not measured in detector
- ▶ measure differential cross section (in fiducial region) in bins of some quantity ⇒ e.g.  $p_T^H$ ,  $N_{jet}$ , ...
  - $\Rightarrow$  unfold to truth-level: account for detector response matrix (truth  $\Leftrightarrow$  reco)
  - $\Rightarrow$  correct for non-fiducial effects
- typically use simple variables in analysis for signal extraction e.g.  $m_{4\ell}$

## Fiducial (differential) cross sections

• Mantra: optimised for theory/model independence



- Define fiducial phase space (truth) to closely match experimental phase space
  - reduces extrapolation into phase space not measured in detector
  - ▶ measure differential cross section (in fiducial region) in bins of some quantity ⇒ e.g.  $p_T^H$ ,  $N_{jet}$ , ...
    - $\Rightarrow$  unfold to truth-level: account for detector response matrix (truth  $\Leftrightarrow$  reco)
    - $\Rightarrow$  correct for non-fiducial effects
  - typically use simple variables in analysis for signal extraction e.g.  $m_{4\ell}$

### ${\rm H}{\rightarrow}\,\gamma\gamma$ : chained quantile regression

- Improved shower shape corrections using chained quantile regression
  - ▶ train 21 BDTs: predict points along CDF of shower shape/isolation variable
  - correct variable in simulation by mapping to CDF in data
  - photon ID features ordered into chain:

 $\Rightarrow$  next feature BDT(s) include previously corrected variable

- additional stochastic morphing for isolation variables
- vastly improved agreement in photon ID output score



• Reduces dominant systematic in analysis:  $5\% \Rightarrow 2\%$ 

### Likelihood unfolding

• Product over Poisson terms in analysis region, *j*:



Response matrix: describes number of events of type i in region j

- maximum likehood fit will unfold the effect of the detector
  - $\Rightarrow$  measure truth-level cross section,  $\sigma_i$

### ${\rm H}{\rightarrow}\,\gamma\gamma$ : systematic uncertainties

- Nuisance parameters: two types
  - shape: impact mean and width of S model (typically related to  $\gamma$  energy)
  - yield: both experimental and theoretical contributions
- N.B. normalisation theory uncertainties not included in cross section meas.



### $H \rightarrow \gamma \gamma$ : merging schemes

- $\bullet$  Insufficient sensitivity to all STXS bin splittings in H  $\to \gamma\gamma$  alone
  - define two merging schemes with varying granularity
  - e.g minimal merging: 27 kinematic regions as parameters of interest (main body)



### ${\rm H}{\rightarrow}\,\gamma\gamma$ : minimal merging correlations



### $H \rightarrow \gamma \gamma$ : merging schemes

- $\bullet$  Insufficient sensitivity to all STXS bin splittings in H  $\to \gamma\gamma$  alone
  - define two merging schemes with varying granularity
  - e.g maximal merging: 17 kinematic regions as parameters of interest



### $H \rightarrow \gamma \gamma$ : maximal merging results



### ${\rm H}{\rightarrow}\,\gamma\gamma$ : maximal merging correlations



### $H{\rightarrow}ZZ^* \rightarrow 4\ell$ : selection cuts

- Muons:  $p_{\mathcal{T}} > 5$  GeV,  $|\eta| < 2.4$ 
  - ▶ also include low- $p_T$  muons which may not penetrate entire muon system
  - isolation requirements to remove muons from hadron decays
- Electrons:  $p_T > 7$  GeV,  $|\eta| < 2.5$ 
  - multivariate electron identification and isolation algorithm
- FSR recovery
- Impact parameter requirements w.r.t. primary vertex
- Build ZZ candidates from pairs of same flavour opposite charge leptons GeV
  - $Z_1$  with mass closest to nominal Z boson mass,  $Z_2$  as other one
  - Z<sub>1</sub> invariant mass > 40 GeV
  - All leptons separated by  $\Delta R > 0.02$
  - ▶ At least two leptons with  $p_T > 10 \text{ GeV} + \text{ at least one with } p_T > 20 \text{ GeV}$
  - ► All pairs of leptons to have m<sub>ℓ+ℓ−</sub> > 4 GeV
  - ▶ m<sub>4ℓ</sub> > 70 GeV
- For multiple ZZ candidates: choose candidate with highest  $\mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}}$ 
  - if two candidates from same four leptons: choose  $Z_1$  closest to  $m_Z$

### $H \rightarrow ZZ^* \rightarrow 4\ell$ : correlations

|                                     | CМ       | 1S    |       |                   |        |       |       |       |       |           |       |       |       |       |             | 137  | fb <sup>-1</sup> | (13 1 | eV)  |   | 10   |
|-------------------------------------|----------|-------|-------|-------------------|--------|-------|-------|-------|-------|-----------|-------|-------|-------|-------|-------------|------|------------------|-------|------|---|------|
| ggH-0j/p⊤[0,10]                     | 1.00     |       |       |                   |        |       |       |       |       |           |       |       |       |       |             |      |                  |       |      |   | 1.0  |
| ggH−0j/p⊤[10,200]                   | 0.03     | 1.00  |       |                   |        |       |       |       |       |           |       |       |       |       | H           | ⊢ ⊢  | ΖZ               |       |      | _ | 0.8  |
| ggH−1j/p <sub>T</sub> [0,60]        | 0.06     | -0.29 | 1.00  |                   |        |       |       |       |       |           |       |       |       | m⊦    | 1 = 1       | L25. | 38 G             | θeV   |      |   | 0.0  |
| ggH−1j/p <sub>T</sub> [60,120]      | 0.06     | 0.09  |       | 1.00              |        |       |       |       |       |           |       |       |       |       |             |      |                  |       |      | _ | 0.6  |
| ggH-1j/p <sub>T</sub> [120,200]     | 0.07     | 0.14  | 0.37  | 0.33              | 1.00   |       |       |       |       |           |       |       |       |       |             |      |                  |       |      |   |      |
| ggH−2j/p⊤[0,60]                     | 0.01     | 0.05  | -0.13 | 0.06              | 0.03   | 1.00  |       |       |       |           |       |       |       |       |             |      |                  |       |      | - | 0.4  |
| ggH−2j/p <sub>T</sub> [60,120]      | 0.06     | 0.06  | 0.51  | 0.18              | 0.40   | -0.01 | 1.00  |       |       |           |       |       |       |       |             |      |                  |       |      |   |      |
| ggH-2j/p <sub>T</sub> [120,200]     | 0.05     | 0.05  | 0.47  |                   | -0.01  | 0.01  | 0.27  | 1.00  |       |           |       |       |       |       |             |      |                  |       |      | - | 0.2  |
| ggH/p <sub>T</sub> >200             | 0.05     | 0.06  | 0.61  | 0.66              | 0.41   | 0.03  | 0.48  | 0.48  | 1.00  |           |       |       |       |       |             |      |                  |       |      |   |      |
| ggH-2j/m <sub>jj</sub> >350         | -0.01    | 0.03  | 0.00  | 0.06              | 0.01   | 0.02  | 0.00  | -0.04 | 0.09  | 1.00      |       |       |       |       |             |      |                  |       |      | - | 0.0  |
| qq-rest                             | -0.05    | -0.05 | -0.78 | -0.84             | -0.53  | -0.04 | -0.57 | -0.58 | -0.80 | -0.10     | 1.00  |       |       |       |             |      |                  |       |      |   |      |
| qqH-2j/m <sub>jj</sub> [60,120]     | -0.01    | -0.01 | -0.18 | -0.16             | -0.03  | -0.03 | -0.34 | -0.37 | -0.29 | -0.06     | 0.23  | 1.00  |       |       |             |      |                  |       |      | - | -0.2 |
| qqH-2j/m <sub>jj</sub> [350,700]    | 0.04     | 0.05  | 0.30  | 0.29              | 0.22   | 0.01  | 0.25  | 0.26  | 0.28  | -0.46     | -0.36 | -0.04 | 1.00  |       |             |      |                  |       |      |   | ~ 4  |
| qqH-2j/m <sub>jj</sub> >700         | 0.01     | 0.01  | 0.03  | 0.02              | 0.01   | 0.00  | 0.04  | 0.03  | 0.03  | -0.06     | -0.04 | 0.00  | -0.02 | 1.00  |             |      |                  |       |      | _ | -0.4 |
| qqH-3j/m <sub>jj</sub> >350         | 0.02     | 0.00  | 0.07  | 0.04              | 0.04   | -0.01 | 0.04  | 0.08  | 0.00  | -0.93     | 0.00  | 0.02  | 0.25  | -0.08 | 1.00        |      |                  |       |      |   | 0.0  |
| qqH-2j/p <sub>T</sub> >200          | 0.00     | 0.00  | 0.00  | 0.00              | 0.00   | 0.00  | 0.00  | 0.00  | -0.08 | 0.00      | 0.00  | 0.00  | 0.00  | 0.00  | 0.00        | 1.00 |                  |       |      |   | -0.6 |
| VH/p <sup>H</sup> [0,150]           | 0.05     | -0.10 | -0.06 | -0.10             | -0.02  | 0.00  | -0.02 | -0.02 | -0.03 | -0.02     | 0.06  | 0.00  | -0.01 | 0.00  | 0.03        | 0.00 | 1.00             |       |      |   | 0 8  |
| VH/p <sub>T</sub> <sup>H</sup> >150 | 0.00     | 0.00  | 0.00  | 0.00              | 0.00   | 0.00  | 0.00  | 0.00  | -0.12 | -0.01     | 0.00  | 0.01  | 0.00  | 0.00  | 0.01        | 0.00 | 0.00             | 1.00  |      |   | -0.0 |
| ttH                                 | 0.01     | 0.01  | -0.05 | -0.04             | -0.03  | 0.00  | -0.09 | -0.09 | -0.08 | 0.31      | 0.06  | 0.03  | -0.12 | 0.00  | -0.34       | 0.00 | -0.03            | 0.00  | 1.00 |   | -10  |
|                                     | 10]      | [00]  | 60]   | 20]               | [ 00 ] | 60]   | 20]   | [00]  | 200   | 350       | est   | 20]   | [00]  | 700   | 350         | 200  | 50]              | 150   | ttH  |   | 1.0  |
|                                     | ·[0,     | 0,2   | ·[0,  | 0,1               | 0,2    | ·[0,  | 0,1   | 0,2   | P12   | < <u></u> |       | 0,1   | 0,7   | -     | ^! <u>[</u> | p1 > | 0,1              | £d.   |      |   |      |
|                                     | j/p      | 11    | j/p   | o <sub>T</sub> [6 | []2    | j/p₁  | 01[6  | r[12  | /Hgt  | 2j∕n      | 0     | 11 [6 | [35   | 2j∕n  | 3j/n        | 2j/  | ]¦d,             | /H/   |      |   |      |
|                                     | <u>0</u> | 1/fe  | Ĩ     | 1j/l              | i/p    | -2    | 21/1  | i/p   | 0,    | Ŧ         |       | Ē,    | , m   | Ŧ     | ÷           | 농    | Η̈́              |       |      |   |      |
|                                     | dgh      | ΞĦ    | ggh   | HE.               | Ŧ      | 99h   | Ŧ     | 1-2   |       | <u> </u>  |       | 1-2   | -2j   | ъ     | dc          | 5    |                  |       |      |   |      |
|                                     |          | 96    |       | 36                | ggŀ    |       | 96    | ggł   |       |           |       | dd    | Hpp   |       |             |      |                  |       |      |   |      |

#### $H \rightarrow ZZ^* \rightarrow 4\ell$ : stage 0 cross sections



### $H{\rightarrow} ZZ^* \rightarrow 4\ell$ : merging scheme



### $H{\rightarrow}ZZ^* \rightarrow 4\ell$ : systematics



### $H \rightarrow ZZ^* \rightarrow 4\ell$ : fiducial phase space

| Requirements for the ${ m H}  ightarrow 4\ell$ fiducial phase space                   |                                                      |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|--|--|--|
| Lepton kinematics and isolation                                                       | Lepton kinematics and isolation                      |  |  |  |  |  |  |  |  |
| Leading lepton $p_{\rm T}$                                                            | $p_{\mathrm{T}} > 20 \mathrm{GeV}$                   |  |  |  |  |  |  |  |  |
| Next-to-leading lepton $p_{\rm T}$                                                    | $p_{\rm T} > 10{ m GeV}$                             |  |  |  |  |  |  |  |  |
| Additional electrons (muons) $p_{\rm T}$                                              | $p_{\mathrm{T}} > 7(5) \mathrm{GeV}$                 |  |  |  |  |  |  |  |  |
| Pseudorapidity of electrons (muons)                                                   | $ \eta  < 2.5$ (2.4)                                 |  |  |  |  |  |  |  |  |
| Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton | $< 0.35 p_{\mathrm{T}}$                              |  |  |  |  |  |  |  |  |
| Event topology                                                                        |                                                      |  |  |  |  |  |  |  |  |
| Existence of at least two same-flavor OS lepton pairs, where leptons                  | satisfy criteria above                               |  |  |  |  |  |  |  |  |
| Inv. mass of the $Z_1$ candidate                                                      | $40 < m_{Z_1} < 120  { m GeV}$                       |  |  |  |  |  |  |  |  |
| Inv. mass of the $Z_2$ candidate                                                      | $12 < m_{Z_2} < 120  { m GeV}$                       |  |  |  |  |  |  |  |  |
| Distance between selected four leptons                                                | $\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$ |  |  |  |  |  |  |  |  |
| Inv. mass of any opposite sign lepton pair                                            | $m_{\ell^+\ell'^-}>4{ m GeV}$                        |  |  |  |  |  |  |  |  |
| Inv. mass of the selected four leptons                                                | $105 < m_{4\ell} < 140{\rm GeV}$                     |  |  |  |  |  |  |  |  |

### $H \rightarrow ZZ^* \rightarrow 4\ell$ : fiducial differential results

- Signal extracted in 1D fit  $(m_{4\ell})$  in tight fiducial phase space  $\mathbf{P}$ 
  - inclusive, per-channel, and differential in  $p_T^H$ ,  $|Y_H|$ ,  $N_{iet}$ ,  $p_T^{j1}$ ►
  - systematic comparable to stat uncertainty for inclusive measurement



### $H \rightarrow WW^*$ : selection criteria

- Two opposite flavour  $(e\mu)$ , opposite charged leptons
  - criteria on lepton isolation + transverse/longitudinal impact parameters
  - track algorithm to reject electrons from photons conversions
  - $p_T^{\ell 1} > 25 \text{ GeV}, \ p_T^{\ell 2} > 13 \text{ GeV}$
  - $|\eta^e| < 2.5, |\eta^\mu| < 2.4$
  - ▶ require additional leptons in event to have  $p_T < 10 \text{ GeV}$
- $p_T^{
  m miss} > 30$  GeV,  $p_T^{\ell\ell} > 30$  GeV,  $m^{\ell\ell} > 12$  GeV
- $m_T^H > 60 \text{ GeV}, \ m_T^{\ell 2} = \sqrt{2 p_T^{\ell 2} p_T^{\text{miss}} (1 \cos \Delta \phi(\vec{p}_T^{\ell 2}, \vec{p}_T^{\text{miss}}))} > 30 \text{ GeV}$
- No b-tagged jets with  $p_T > 20$  GeV
- Categorise events in  $(p_T^{\ell 2}, \text{ flavour of leptons})$ :

### $H \rightarrow WW^*$ : fiducal phase space

| Observable                              | Condition                                |
|-----------------------------------------|------------------------------------------|
| Lepton origin                           | Direct decay of $H \rightarrow W^+W^-$   |
| Lepton flavors; lepton charge           | $e\mu$ (not from $\tau$ decay); opposite |
| Leading lepton $p_{\rm T}$              | $p_{ m T}^{l_1}>25{ m GeV}$              |
| Trailing lepton $p_{\rm T}$             | $p_{\mathrm{T}}^{l_2} > 13\mathrm{GeV}$  |
| $ \eta $ of leptons                     | $ \eta  < 2.5$                           |
| Dilepton mass                           | $m^{ll} > 12 \mathrm{GeV}$               |
| $p_{\mathrm{T}}$ of the dilepton system | $p_{\mathrm{T}}^{ll} > 30\mathrm{GeV}$   |
| Transverse mass using trailing lepton   | $m_{\mathrm{T}}^{l_2} > 30\mathrm{GeV}$  |
| Higgs boson transverse mass             | $m_{ m T}^{ m \dot{H}} > 60{ m GeV}$     |
|                                         | *                                        |

#### $H \rightarrow WW^*$ : systematics

- Nuisances (InN) model changes in template shape and normalisation
- Experimental: trigger efficiency, lepton reconstruction and identification efficiency, lepton momentum scale, jet energy scale,  $p_T^{miss}$  uncertainty, b tagging efficiency (17 nuisances), estimation of non-prompt lepton background in calculation of fake factors, integrated luminosity
- Theoretical: choice of PDFs, missing higher orders in perturbative expansion (scale variations), event migrations between jet multiplicity bins, modeling of pileup, underlying event, parton shower, individual background systematics
- Uncertainty in fiducial cross section of each bin excluded from fits
- Unfolding bias is checked

### Regularization

- Remove unphysical fluctuations in neighbouring bins of distribution
- Add penalty term to the likelihood of the form:

$$\mathcal{K}(\mu) = \prod_{i=2}^{N-1} \exp\left(\frac{-\left[(\mu_{i+1} - \mu_i) - (\mu_i - \mu_{i-1})\right]^2}{2\delta^2}\right)$$

- penalizes large variations in signal strengths of neighbouring bins
- acts as smoothing constraint on the unfolded distribution
- $\delta$ : controls strength of regularization
  - value optimised by minimising the global correlation coefficient in Asimov fit
  - optimal value = 2.50
- Not required on  $N_{\rm jet}$  distribution as discrete

#### $H \rightarrow WW^*$ : correlations

- Large correlations due to large gen-to-reco bin migrations  $(p_T^{\text{miss}})$ 
  - regularized  $p_T^H$  (top left) shows smaller correlations than unregularized (bottom right)



## VH H $\rightarrow$ WW<sup>\*</sup> : selection (1)

|                                                  | WHSS     | WH31 | ZH31     | ZH41 |
|--------------------------------------------------|----------|------|----------|------|
| Number of leptons with $p_{\rm T} > 10$ GeV      | 2        | 3    | 3        | 4    |
| Number of jets with $p_{\rm T} > 30  \text{GeV}$ | $\geq 1$ | 0    | $\geq 1$ | —    |

#### WHSS

#### • WH3 $\ell$

|                                      | Preselection                                                |                                     |      |      |  |  |  |  |  |
|--------------------------------------|-------------------------------------------------------------|-------------------------------------|------|------|--|--|--|--|--|
| Lepton $p_T$ (GeV)                   |                                                             | > 25,20                             |      |      |  |  |  |  |  |
| Third lepton veto                    | Yes                                                         |                                     |      |      |  |  |  |  |  |
| $m_{\ell\ell}$ (GeV)                 | > 12                                                        |                                     |      |      |  |  |  |  |  |
| $\Delta \eta_{\ell\ell}$             | < 2.0                                                       |                                     |      |      |  |  |  |  |  |
| B jet veto                           | DeepCSV, medium WP, applied to all jets with $p_T > 20$ GeV |                                     |      |      |  |  |  |  |  |
| $p_T^{miss}$ (GeV)                   | > 30                                                        |                                     |      |      |  |  |  |  |  |
| $\tilde{m}_H$ (GeV)                  | > 50                                                        |                                     |      |      |  |  |  |  |  |
|                                      | 1j eµ SR                                                    | 1j eµ SR 2j eµ SR 1j µµ SR 2j µµ SR |      |      |  |  |  |  |  |
| Jets with $p_T > 30$ GeV             | $==1$ $\geq 2$ $==1$ $\geq 2$                               |                                     |      |      |  |  |  |  |  |
| $m_{ii}$ (GeV)                       |                                                             | < 100 < 100                         |      |      |  |  |  |  |  |
| $ \tilde{m}_{\ell\ell} - m_Z $ (GeV) |                                                             |                                     | > 15 | > 15 |  |  |  |  |  |

|                              | Preselection                                               |                |        |           |  |  |  |  |
|------------------------------|------------------------------------------------------------|----------------|--------|-----------|--|--|--|--|
| Lenten a (C-N)               |                                                            | 1 165616661011 |        |           |  |  |  |  |
| Lepton $p_T$ (GeV)           |                                                            | > 23           | ,20,15 |           |  |  |  |  |
| Fourth lepton $p_T$ (GeV)    |                                                            | <              | 10     |           |  |  |  |  |
| ch <sub>ℓℓℓ</sub>            | ±1                                                         |                |        |           |  |  |  |  |
| $min(m_{\ell\ell})$ (GeV)    | > 12                                                       |                |        |           |  |  |  |  |
| Jets with $p_T > 30$ GeV     | 0                                                          |                |        |           |  |  |  |  |
| B jet veto                   | DeepCSV, loose WP, applied to all jets with $p_T > 20$ GeV |                |        |           |  |  |  |  |
|                              | OSSF SR SSSF SR WZ CR Z Y CR                               |                |        |           |  |  |  |  |
| OSSF lepton pair             | Yes                                                        | No             | Yes    | Yes       |  |  |  |  |
| $ m_{\ell\ell} - m_Z $ (GeV) | > 20 < 20 < 20                                             |                |        |           |  |  |  |  |
| $p_T^{miss}$ (GeV)           | > 40 > 45 < 40                                             |                |        |           |  |  |  |  |
| $m_{\ell\ell\ell}$ (GeV)     |                                                            |                | > 100  | [80, 100] |  |  |  |  |

## VH H $\rightarrow$ WW<sup>\*</sup> : selection (2)

• ZH3 $\ell$ 

|                                                             | Preselection                                                |           |           |           |  |  |  |  |
|-------------------------------------------------------------|-------------------------------------------------------------|-----------|-----------|-----------|--|--|--|--|
| Lepton $p_T$ (GeV)                                          | > 25, 20, 15                                                |           |           |           |  |  |  |  |
| Fourth lepton $p_{\rm T}$ (GeV)                             | < 10                                                        |           |           |           |  |  |  |  |
| ch <sub>ℓℓℓ</sub>                                           | ±1                                                          |           |           |           |  |  |  |  |
| $\min(m_{\ell\ell})$ (GeV)                                  | > 12                                                        |           |           |           |  |  |  |  |
| b jet veto                                                  | DeepCSV, medium WP, applied to all jets with $p_T > 20$ GeV |           |           |           |  |  |  |  |
| $ m_{\ell\ell} - m_Z $ (GeV)                                | < 25                                                        |           |           |           |  |  |  |  |
| $ m_{\ell\ell\ell} - m_Z $ (GeV)                            | > 20                                                        |           |           |           |  |  |  |  |
|                                                             | 1j SR 2j SR 1j WZ CR 2j WZ CR                               |           |           |           |  |  |  |  |
| Jets with $p_T > 30$ GeV                                    | $==1$ $\geq 2$ $==1$ $\geq 2$                               |           |           |           |  |  |  |  |
| $\Delta \varphi(\ell p_{\mathrm{T}}^{\mathrm{miss}}, j(j))$ | $< \pi/2$                                                   | $< \pi/2$ | $> \pi/2$ | $> \pi/2$ |  |  |  |  |

#### • ZH4 $\ell$

|                                    | Preselection                                               |                  |      |  |  |  |  |  |
|------------------------------------|------------------------------------------------------------|------------------|------|--|--|--|--|--|
| Lepton $p_T$ (GeV)                 |                                                            | > 25, 15, 10, 10 |      |  |  |  |  |  |
| Fifth lepton $p_{\rm T}$ (GeV)     |                                                            | < 10             |      |  |  |  |  |  |
| $ch_{\ell\ell\ell\ell}$            |                                                            | 0                |      |  |  |  |  |  |
| $\min(m_{\ell\ell})$ (GeV)         | < 12                                                       |                  |      |  |  |  |  |  |
| $ m_{\ell\ell}^Z - m_Z $ (GeV)     | < 15                                                       |                  |      |  |  |  |  |  |
| B jet veto                         | DeepCSV, loose WP, applied to all jets with $p_T > 20$ GeV |                  |      |  |  |  |  |  |
|                                    | XSF SR XDF SR ZZ CR                                        |                  |      |  |  |  |  |  |
| X pair flavor                      | Same                                                       | Different        |      |  |  |  |  |  |
| $m_{\ell\ell\ell\ell}$ (GeV)       | > 140                                                      |                  |      |  |  |  |  |  |
| $m_{\ell\ell}^X$ (GeV)             | [10,60] [10,70] [75,105]                                   |                  |      |  |  |  |  |  |
| PUPPI $p_{\rm T}^{\rm miss}$ (GeV) | > 35                                                       | > 20             | < 35 |  |  |  |  |  |