

Mathematisch-Naturwissenschaftliche Fakultät Institut für theoretische Physik

Parton-Shower Effects in Higgs Production via Vector-Boson Fusion

Work done in collaboration with Barbara Jäger, Alexander Karlberg, Simon Plätzer and Marco Zaro (Eur. Phys. J. C 80 (2020) 8, 756)

26.07.2021, Johannes Scheller

EPS-HEP2021 Online Conference

Outline

- The VBF-H Process
- Setup of the Calculation & Procedure
- Discussion of Generator-Specific Uncertainties (Example: POWHEG-BOX)
- Comparison of the different generators

The VBF Approximation

- Consider the process $pp \to Hjj$ at $\mathcal{O}(\alpha_{em}) = 3$ and $\mathcal{O}(\alpha_{s}) = 0$ (plus NLO corrections)
- VBF approximation: neglect *s*-channel contributions, as well as interference between *t* and *u*-channel
- No color exchange between quark lines
- Distinct experimental signature (low jet activity between tagging jets)
- Valid up to the percent level within appropriate cuts (!)
- Theory uncertainties dominating in VBF channel, little knowledge of PS uncertainties

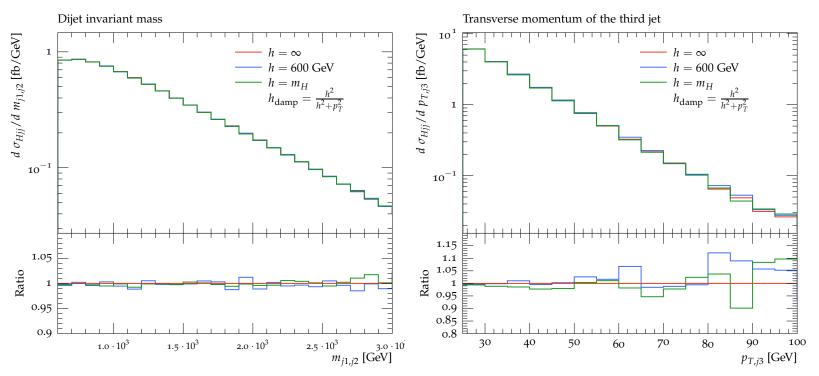
Setup

- Consider *pp* scattering at the LHC with $\sqrt{s} = 13 \text{ TeV}$
- PDF set: PDF4LHC15_nnlo_100_pdfas (LHAPDF ID=91200)
- Relatively tight VBF cut set:

 $|y_j| < 4.5, \quad p_{T,j} > 25 \text{ GeV}$ $m_{jj} > 600 \text{ GeV}, \quad |\Delta y_{j_1 j_2}| > 4.5, \quad y_{j_1} \cdot y_{j_2} < 0$

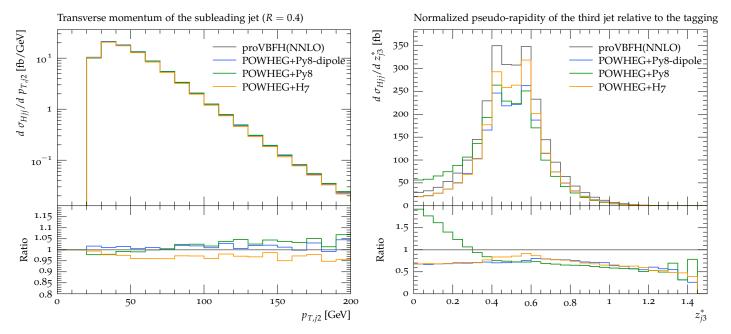
- Jets defined with anti- k_t algorithm (R = 0.4)
- no hadronisation or underlying event effects considered!

Setup

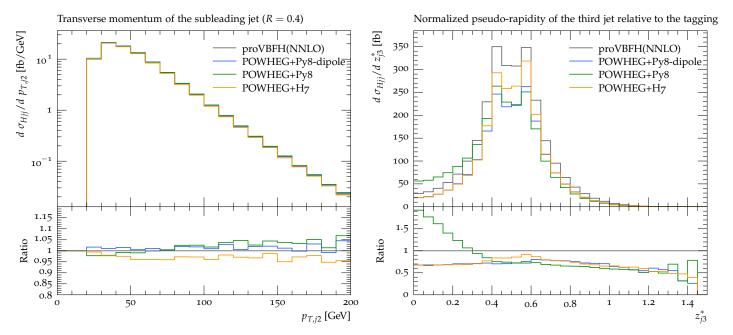

Possible variations:

- Generator
- Matching scheme (MC@NLO (\oplus) or POWHEG (\otimes) style)
- Shower (SMC program, angular vs. dipole)
- Recoil (global vs. local)
- Intrinsic generator variables, scales...

generator	matching	SMC	shower recoil	used in comparison
VBFNLO+Herwig7/Matchbox	\oplus	HERWIG 7.1.5	global (\tilde{q}) / local (dipole)	$\checkmark(\tilde{q})$
HJets+Herwig7/Matchbox	\oplus	HERWIG 7.1.5	global $(\tilde{q}) / \text{local (dipole)}$	
MadGraph5_aMC@NLO 2.6.1	\oplus	HERWIG 7.1.2	global	\checkmark
MadGraph5_aMC@NLO 2.6.1	\oplus	PYTHIA 8.230	global	
POWHEG-BOX V2	\otimes	PYTHIA 8.240	local (dipole)	\checkmark
POWHEG-BOX V2	\otimes	PYTHIA 8.240	global	
POWHEG-BOX V2	\otimes	HERWIG 7.1.4	global (\tilde{q})	


POWHEG-BOX

- Intrinsic uncertainties assessed by variation of SMC and hdamp parameter with hdamp $= \frac{h^2}{h^2 + p_T^2}$
- Nearly no influence of hdamp variation


POWHEG-BOX

- Matching to HERWIG and PYTHIA8, the latter one with default global recoil and local (dipole) recoil
- Only small differences for hard observables
- Larger differences in third jet observables

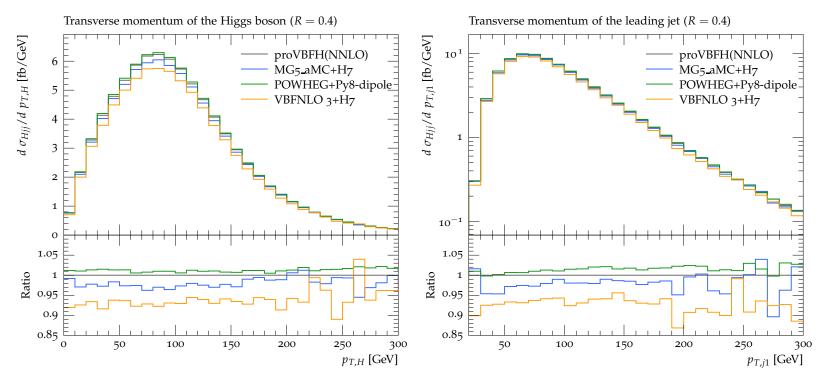
POWHEG-BOX

- Matching to HERWIG and PYTHIA8, the latter one with default global recoil and local (dipole) recoil
- Only small differences for hard observables

$$\mathsf{z}_{j_{3}}^{*} = \frac{\eta_{j_{3}} - \frac{\eta_{j_{1}} - \eta_{j_{2}}}{2}}{|\Delta \eta_{j_{1}j_{2}}|}$$

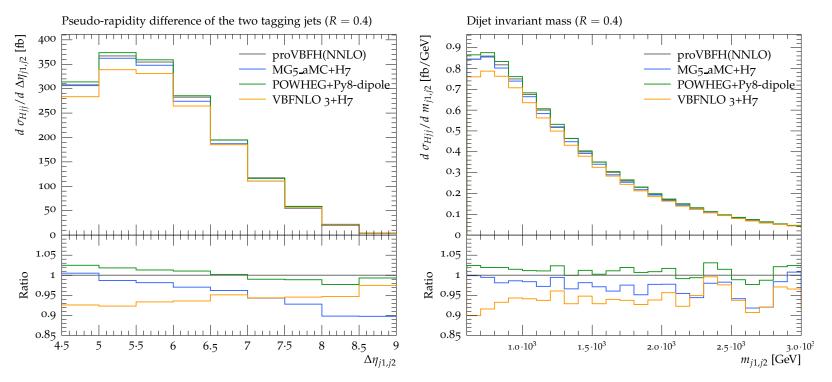
The Recoil Schemes in Pythia8

- PYTHIA8 offers two different recoil schemes
- (Default) global recoil scheme: valid, if no color flow between IS and FS (e.g. Drell-Yan)
- New dipole approach with local recoil: for processes with initial-final color flow, e.g. DIS
- VBF: no color connection between incoming partons ⇒ global distribution of recoil clearly unphysical
- POWHEG-BOX V2 can be interfaced to both recoil schemes, MadGraph5_aMC@NLO only to default scheme

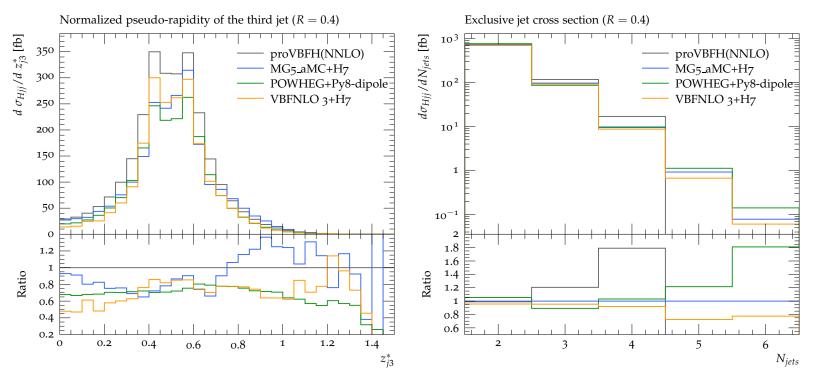

Best Predictions

generator	matching	SMC	shower recoil	used in comparison
VBFNLO+Herwig7/Matchbox	\oplus	HERWIG 7.1.5	global (\tilde{q}) / local (dipole)	$\checkmark(\tilde{q})$
HJets+Herwig7/Matchbox	\oplus	HERWIG 7.1.5	global $(\tilde{q}) / \text{local (dipole)}$	
MadGraph5_aMC@NLO 2.6.1	\oplus	HERWIG 7.1.2	global	\checkmark
MadGraph5_aMC@NLO 2.6.1	\oplus	PYTHIA 8.230	global	
POWHEG-BOX V2	\otimes	PYTHIA 8.240	local (dipole)	\checkmark
POWHEG-BOX V2	\otimes	PYTHIA 8.240	global	
POWHEG-BOX V2	\otimes	HERWIG 7.1.4	global (\tilde{q})	

Now: compare 'best' setups, selected based on the results shown before. We compare to a fixed-order NNLO calculation by proVBFH


Comparing All Generators

- For very inclusive quantities: nearly only differences in normalization
- Very similar shapes


Comparing All Generators

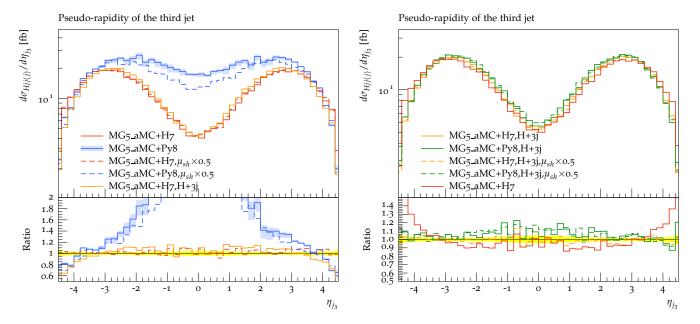
- For typical VBF observables: some shape differences at $\mathcal{O}(10\%)$
- Still dominated by differences in normalization

Best Predictions: Third Jet Observables

- Much larger discrepancies for higher jet multiplicities
- NLO accuracy only for the two hardest jets

Conclusions and Recommendations

- Comprehensive study of parton shower effects in VBF
- Only small dependence on matching prescription
- More significant differences between different SMCs, mainly in normalization
- Uncertainties of third jet observables at $\sim 20\%$
- Possible future studies: include MPI/UE, study radius dependence, comprehensive study of H + 3J
- See also: 2105.11399 and 2106.10987


Thank you!

 ${\sf Questions?}$

johannes.scheller@uni-tuebingen.de

Backup: MG5_aMC and the Pythia8 Recoil Schemes

- Huge discrepancies outside of scale variation, especially in central rapidity region
- Very good agreement with HERWIG7 results when moving to VBF-H + 3J
 - \rightarrow PYTHIA8 matching clearly gives unphysical results!