Precise predictions of the mass of the discovered Higgs boson in supersymmetric scenarios

Heidi Rzehak

Universität Tübingen

One of the best measured properties

... of the discovered Higgs boson = its mass m_H

ATLAS/CMS (Run 1):
$$m_H = 125.09 \pm 0.21$$
 (stat) ± 0.11 (syst) GeV

- Free parameter in the Standard Model
 - → important for predictions of for example Higgs decays in the Standard Model
- In extension of the Standard Model
 - ightarrow Higgs boson mass can be predicted for example in SUSY models

Supersymmetry (SUSY):

Recipe: Standard Model particles

Recipe: Standard Model particles (2HDM)

+ 2nd Higgs doublet

In SUSY models needed for, e.g.:

Generation of
up- and down-type fermion masses

At tree-level:

- one Higgs doublet couples to down-type quarks and leptons, the other one to up-type quarks
 - ⇒ Type II 2HDM

Recipe: Standard Model particles (2HDM)

+ 2nd Higgs doublet

In SUSY models needed for, e.g.:

Generation of

up- and down-type fermion masses

With quantum corrections:

- both Higgs doublets couple to all types of fermions
 - ⇒ Type III 2HDM

Recipe: Standard Model particles (2HDM) + Superpartners + 2nd Higgs doublet

ĝ

Recipe: Standard Model particles (2HDM) + Superpartners + 2nd Higgs doublet

parameters

Recipe: Standard Model particles $+ 2^{nd}$ Higgs doublet (N2HDM) + Superpartners + SUSY-breaking + Higgs singlet Ŵ

(Next-to) Minimal Supersymmetric Standard Model ((N)MSSM)

Why a precise Higgs mass prediction?

constraint on experimentally viable (N)MSSM measured value parameter space

A precise theoretical prediction is needed to fully exploit this constraint:

$$\Delta M_H^{\rm exp.} \approx 200 \; {\rm MeV}$$

VS

 $\Delta M_{H}^{\text{theory}} \approx \mathcal{O}(\text{GeV})$

see discussion in:

[Slavich et al, 2012.15629]

expected:

LHC: $\Delta M_H^{\text{exp.}} = 200 \text{ MeV}$, ILC: $\Delta M_H^{\text{exp.}} = 50 \text{ MeV}$

 Needed as consistent input for the calculation of cross sections and decay widths in the (N)MSSM

Born propagator: Quantum corrections:

Additionally, mixing at loop level:

[Dao, Gabelmann, Mühlleitner, HR 2106:06990]

Example in the NMSSM: Including different two-loop contributions:

New contribution:

- important for large λ, see also [Goodsell, Nickel, Staub 1411:4665]
- implemented in NMSSMCALC

[Baglio, Gabelmann, Gröber, Krause, Mühlleitner, Nhung, HR, Spira, Streicher, Walz]

 $\lambda =$ coupling between Higgs doublet and singlet

Additionally, mixing at loop level:

Different approach for heavy SUSY particles

Effective Field Theories (EFT) approach:

Effective Field Theories (EFT) approach:

Some further details:

[Murphy, HR 1909.00726]

ullet Non-vanishing phases allowed o possible CP-violation

Some further details:

Murphy, HR 1909.00726

- ullet Non-vanishing phases allowed o possible CP-violation
- One-loop threshold contributions to quartic couplings λ_1 to λ_7 of $\mathcal{O}(h_{\{t,b\}}^{\mathsf{MSSM}^2}\{g^2,g_y^2,h_{\{t,b\}}^{\mathsf{MSSM}^2}\})$

```
[Carena, Ellis, Lee, Pilaftsis, Wagner 1512.00437; Haber, Hempfling hep-ph/9307201; Bahl, Hollik 1805.00867] h_{\{t,b\}}^{\rm MSSM} = {\rm MSSM} \; \{{\rm top, \, bottom}\} \; {\rm Yukawa \, coupling}, g,\; gy=SU(2),\; U(1) \; {\rm gauge \, couplings}
```

Some further details:

Murphy, HR 1909.00726

- ullet Non-vanishing phases allowed o possible CP-violation
- One-loop threshold contributions to quartic couplings λ_1 to λ_7 of $\mathcal{O}(h_{\{t,b\}}^{\mathsf{MSSM}^2}\{g^2,g_y^2,h_{\{t,b\}}^{\mathsf{MSSM}^2}\})$ [Carena, Ellis, Lee, Pilaftsis, Wagner 1512.00437; Haber, Hempfling hep-ph/9307201; Bahl, Hollik 1805.00867]
- One-loop threshold contributions to the Yukawa couplings h_t , h_b , h_t' , h_b' of $\mathcal{O}(h_{\{t,b\}}^{\text{MSSM}}\{h_{\{t,b\}}^{\text{MSSM}^2},g_s^2\})$,

```
see also [Gorbahn, Jäger, Nierste, Trine 0901.2065]
```

```
h_{\{t,b\}}= 2HDM {top, bottom} Yukawa coupling, h'_{\{t,b\}}= loop-induced 2HDM {top, bottom} Yukawa coupling to 'wrong' Higgs doublet, g_s= strong gauge coupling
```

Some further details:

Murphy, HR 1909.00726

- ullet Non-vanishing phases allowed o possible CP-violation
- One-loop threshold contributions to quartic couplings λ_1 to λ_7 of $\mathcal{O}(h_{\{t,b\}}^{\mathsf{MSSM}^2}\{g^2,g_y^2,h_{\{t,b\}}^{\mathsf{MSSM}^2}\})$ [Carena, Ellis, Lee, Pilaftsis, Wagner 1512.00437; Haber, Hempfling hep-ph/9307201; Bahl, Hollik 1805.00867]
- One-loop threshold contributions to the Yukawa couplings h_t , h_b , h_t' , h_b' of $\mathcal{O}(h_{\{t,b\}}^{\text{MSSM}}\{h_{\{t,b\}}^{\text{MSSM}^2},g_s^2\})$, see also [Gorbahn, Jäger, Nierste, Trine 0901.2065]
- Two-loop RGEs for the complex 2HDM Type III
 [Machacek, Vaughn; Kuo, Wang, Xiao; Schienbein, Staub, Steudtner, Svirina;
 Sperling, Stöckinger, Voigt; Oredsen; Thomsen]

Some further details:

Murphy, HR 1909.00726]

- $\bullet \ \ \mathsf{Non\text{-}vanishing\ phases\ allowed} \ \to \ \mathsf{possible\ CP\text{-}violation}$
- One-loop threshold contributions to quartic couplings λ_1 to λ_7 of $\mathcal{O}(h_{\{t,b\}}^{\mathsf{MSSM}^2}\{g^2,g_y^2,h_{\{t,b\}}^{\mathsf{MSSM}^2}\})$ [Carena, Ellis, Lee, Pilaftsis, Wagner 1512.00437; Haber, Hempfling hep-ph/9307201; Bahl, Hollik 1805.00867]
- One-loop threshold contributions to the Yukawa couplings h_t , h_b , h_t' , h_b' of $\mathcal{O}(h_{\{t,b\}}^{\text{MSSM}}\{h_{\{t,b\}}^{\text{MSSM}^2},g_s^2\})$, see also [Gorbahn, Jäger, Nierste, Trine 0901.2065]
- Two-loop RGEs for the complex 2HDM Type III
 [Machacek, Vaughn; Kuo, Wang, Xiao; Schienbein, Staub, Steudtner, Svirina;
 Sperling, Stöckinger, Voigt; Oredsen; Thomsen]
- Vanishing 1st, 2nd generation Yukawa couplings

Some further details:

Murphy, HR 1909.00726]

- ullet Non-vanishing phases allowed o possible CP-violation
- One-loop threshold contributions to quartic couplings λ_1 to λ_7 of $\mathcal{O}(h_{\{t,b\}}^{\mathsf{MSSM}^2}\{g^2,g_y^2,h_{\{t,b\}}^{\mathsf{MSSM}^2}\})$ [Carena, Ellis, Lee, Pilaftsis, Wagner 1512.00437; Haber, Hempfling hep-ph/9307201; Bahl, Hollik 1805.00867]
- One-loop threshold contributions to the Yukawa couplings h_t , h_b , h_t' , h_b' of $\mathcal{O}(h_{\{t,b\}}^{\mathsf{MSSM}}\{h_{\{t,b\}}^{\mathsf{MSSM}^2},g_s^2\})$, see also [Gorbahn, Jäger, Nierste, Trine 0901.2065]
- Two-loop RGEs for the complex 2HDM Type III
 [Machacek, Vaughn; Kuo, Wang, Xiao; Schienbein, Staub, Steudtner, Svirina;
 Sperling, Stöckinger, Voigt; Oredsen; Thomsen]
- Vanishing 1st, 2nd generation Yukawa couplings
- Calculation of masses in 2HDM: only one-loop Yukawa contributions

Mass of the lightest Higgs boson M_h

Here: $M_h < 124 \text{ GeV}$

 $m_{H^{\pm}}$ a good scale?

What about $m_t^{\overline{\text{MS}}}$?

 $m_t^{\overline{\rm MS}} = {
m top~quark~mass}$ in $\overline{\rm MS}$ scheme

Parameters:

$$M_S=3$$
 TeV, $|A_t|=|A_b|=|\mu|=3M_S$, $\tan\beta=5$, vanishing phases

Effective Field Theories (EFT) approach:

Mass of the lightest Higgs boson M_h

vanishing phases

Medium-heavy Higgs bosons & heavy SUSY particles

Effective Field Theories (EFT) approach:

Mass of the lightest Higgs boson M_h

Combination of SM & 2HDM as low-energy EFT

[Lee, Wagner 1508.00576; Bahl, Hollik 1805.00867]

• At scale $m_{H^{\pm}}$: Go to Higgs-Basis: $H_1 = \cos \beta \Phi_1 + \sin \beta \Phi_2 \\ H_2 = \cos \beta \Phi_2 - \sin \beta \Phi_1 \\ \Phi_1, \Phi_2 = \text{Higgs doublets}$

 \rightarrow Only H_1 has a non-vanishing vacuum expectation value v

- Identify the "SM-like" entry of $\mathcal{M}_{\mathsf{Higgs\ basis}}$ with $\left(m_h^{\mathsf{SM}}\right)^2 = \lambda^{\mathsf{SM}} v^2$ \to tree-level matching to SM
- Evolving λ^{SM} , y_t , g_s , and v down to m_t

Mass of the lightest Higgs boson M_h

Combination:

For large $m_{H^{\pm}}$: good agreement with SM EFT

For small $m_{H^{\pm}}$: good agreement with 2HDM EFT

Approaches and advantages

Advantages of EFT approach:

- Resummation of large logarithms to all orders
- \rightarrow Required for heavy SUSY particles

Advantages of Fixed-order approach:

- Complete result up to the considered order
- Takes mass differences automatically into account
- \Rightarrow Make use of both \rightarrow Hybrid approach

Hybrid approach

[Bahl, Murphy, HR 2010.04711]

see also [Hahn, Heinemeyer, Hollik, HR, Weiglein 1312.4937; Bahl, Hollik 1609.00371; Staub, Porod 1703.03267; Athron, Bach, Harries, Kwasnitza, Park, Stöckinger, Voigt, Ziebell 1710.03760]

 Redefine Higgs fields of fixed-order calculation to match normalization of the Higgs fields in the EFT

[Bahl, Hollik 1805.00867; Bahl 1812.06452]

- 2) Add individual results of EFT and fixed-order calculation
 - ightarrow Need subtraction terms to avoid double counting

$$\hat{\Sigma}_{ij}^{\rm hybrid}(p^2) = \hat{\Sigma}_{ij}^{\rm fixed~order}(p^2) + \Delta_{ij}^{\rm EFT} - \Delta_{ij}^{\rm sub}$$

 \Rightarrow Two-point-vertex-function matrix Γ_{hHA} :

$$\hat{\Gamma}_{hHA}(p^2) = \mathrm{i} \left[p^2 \mathbb{1} - \mathrm{diag}(m_h^2, m_H^2, m_A^2) + \hat{\Sigma}^{\mathrm{hybrid}}(p^2) \right]$$

 \Rightarrow Pole masses = poles of inverse two-point-vertex function Γ_{hHA}^{-1} [Bahl, Hollik 1805,00867]

Differences in the EFT part

[Bahl, Murphy, HR 2010.04711]

- Additional threshold contributions for the 2HDM quartic couplings λ₁ to λ₇:
 - * Purely electroweak contributions at one-loop
 - * $\mathcal{O}(\alpha_t \alpha_s)$ contributions [Bahl, Sobolev, Weiglein 2009.07572; Lee, Wagner 1508.00576]
- Electroweak contributions to the thresholds of the 2HDM Yukawa couplings
- Full one-loop threshold between the SM and the 2HDM
- Extraction of mass of SM-like Higgs boson incl. full one- and two-loop order [Buttazzo et al 1307.3536]
- Vanishing bottom Yukawa couplings

CP-odd admixture

Summary

- Higgs mass: Important constraint for the (N)MSSM
- Fixed-order approach: Complete up-to considered order:
 - \rightarrow here: NMSSM example incl. large λ contributions
- EFT approach: Resummation of Logs:
 - → here: complex 2HDM type III as low-energy EFT combined with SM EFT contributions
- Hybrid approach: combines advantages of EFT and fixed-order approach
 - ightarrow here: generalization of previous results to complex parameters
 - → implemented into FeynHiggs
 - [Bahl, Hahn, Heinemeyer, Hollik, Paßehr, HR, Weiglein]
- CP-odd admixture to SM-like Higgs boson in MSSM tiny
- CP-mixing for heavy Higgs bosons possible

Parameter values for NMSSM example

[Dao, Gabelmann, Mühlleitner, HR 2106:06990]

$$\begin{split} &\kappa = \lambda \kappa_0/\lambda_0, \ \lambda_0 = 0.46, \ \kappa_0 = 0.43, \\ &\text{Re}(A_\kappa) = -4 \ \text{GeV}, \ |\mu_{\text{eff}}| = \lambda v_S/\sqrt{2} = 200 \ \text{GeV}, \ \text{tan} = \beta = 3.7 \\ &m_{H^\pm} = 640 \ \text{GeV}, \ m_{\tilde{Q}_3} = 1 \ \text{TeV}, \ m_{\tilde{t}_R} = 1.8 \ \text{TeV}, \\ &m_{\tilde{X} \neq \tilde{Q}_3, \tilde{t}_R} = 3 \ \text{TeV}, \ A_t = 2 \ \text{TeV}, \ A_{i \neq t, \kappa} = 0 \ \text{GeV}, \\ &|M_1| = 2|M_2| = 800 \ \text{GeV}, \ M_3 = 2 \ \text{TeV}, \\ &\text{all phases} = 0 \end{split}$$

Mass of the lightest Higgs boson M_h : EFT approach

[Murphy, HR]

Obviously, Higgs mass depends on phases.

Parameters:

$$M_S = 5 \text{ TeV}, |A_t| = |A_b| = |\mu| = 2M_S, m_{H^{\pm}} = 500 \text{ GeV}, \varphi_{\mu} = \varphi_{M_2} = 0$$

CP-odd admixture $|U_{13}|^2$: **EFT approach**

[Murphy, HR]

Only for light charged Higgs bosons:

Relatively large CP-odd admixture to SM-like Higgs boson

$$M_S = 30 \text{ TeV}, |A_t| = |A_b| = |\mu| = 3M_S, \tan \beta = 5, \varphi_{\mu} = \varphi_{M_3} = 0$$

 $|U_{13}|^2/\%$

CP-mixed heavy Higgs bosons: Hybrid approach

CP-mixed heavy Higgs bosons possible:

Benchmark scenario

[Bagnaschi et al 1808.07542]

→ exclusion bounds change with CP-violation With new calculation:

With new calculation: overall picture remains the same but details change

Benchmark scenario: $M_{h_1}^{125}(CPV)$ scenario

[Bagnaschi et al 1808.07542]

$$M_{Q_3}=M_{U_3}=M_{D_3}=M_{L_3}=M_{E_3}=2$$
 TeV, $\mu=1.65$ TeV, $M_1=M_2=1$ TeV, $M_3=2.5$ TeV, $|A_t|=\mu\cot\beta+2.8$ TeV, $\phi_{A_t}=rac{2\pi}{15}$, $A_b=A_{\tau}=|A_t|$, all other phases $=0$.