The JHU generator framework: EFT applications in Higgs physics

Jeffrey Davis (JHU) for the JHUGen authors

JHUGen Framework

• JHUGenerator <u>https://spin.pha.jhu.edu/</u>

See talks:

<u>H. Roskes at LHC EFT WG</u> <u>H. Roskes at Pheno 2020</u> <u>M. Xiao at ICHEP 2020</u> <u>U. Sarica at Higgs 2020</u> <u>A. Gritsan at LHC Higgs WG</u> M. Schulze at LHC Higgs WG

- Simulate wide range of processes involving spin 0,1,2 particles with a general coupling model
- JHUGen MELA Matrix Element Likelihood Approach
 - Calculate observables to optimally isolate processes or operators
 - Reweight generated samples from one hypothesis to another
- JHUGenLexicon
 - Tool for translation between different EFT bases and the JHUGen amplitude basis convention

JHUGen Framework

JHUGenerator

• New support for tWH process

See recently: arxiv: 2104.04277 arxiv:2002.09888

Anomalous Couplings and EFT

- HVV couplings parameterized by tensor structures which allow for modelling of any EFT effects $A(HVV) = \frac{1}{v} \begin{cases} M_V^2 \left(g_1^{VV} + \frac{\kappa_1^{VV} q_1^2 + \kappa_2^{VV} q_2^2}{\left(\Lambda_1^{VV}\right)^2} + \frac{\kappa_3^{VV} (q_1 + q_2)^2}{\left(\Lambda_Q^{VV}\right)^2} + \frac{2q_1 \cdot q_2}{M_V^2} g_2^{VV} \right) (\varepsilon_1 \cdot \varepsilon_2)$
- EFT effects in VBS are included in off-shell simulation $-2g_2^{VV}(\varepsilon_1 \cdot q_2)(\varepsilon_2 \cdot q_1) 2g_4^{VV}\varepsilon_{\varepsilon_1 \varepsilon_2 q_1 q_2} \Big\}.$
- Using JHUGenLexicon we can map these amplitude couplings to any other EFT basis we want:
 - Enforce SU(2) x U(1) to translate between Amplitude basis and EFT bases

External Constraints

- Any EFT Basis with SU(2) x U(1) symmetry allows for some shift to the W mass and Zff couplings, etc.
 - δm in Higgs Basis, c_{HWB} in Warsaw Basis (W mass)
 - c_{HWB} shifts Zff couplings
- Some EFT effects better constrained by EW precision measurements. Enforce these constraints in JHUGenLexicon
 - "Custodial Symmetry"
 - Fixes W mass to SM value

$$\begin{split} \delta g_1^{ZZ} &= \frac{v^2}{\Lambda^2} \left(2w_{\phi bx} + \frac{6e^2}{s_w^2} w_{\phi BW} + (\frac{3c_w^2}{2s_w^2} - \frac{1}{2})w_{\phi D} \right) \,, \\ \kappa_1^{ZZ} &= \frac{v^2}{\Lambda^2} \left(-\frac{2e^2}{s_w^2} w_{\phi BW} + (1 - \frac{1}{2s_w^2})w_{\phi D}) \right) \,, \end{split}$$

	$\delta g_1^{ZZ} = \delta g_1^{WW}$	κ_1^{ZZ}	g_2^{ZZ}	$g_2^{Z\gamma}$	$g_2^{\gamma\gamma}$	g_4^{ZZ}	$g_4^{Z\gamma}$	$g_4^{\gamma\gamma}$	$\kappa_2^{Z\gamma}$	κ_1^{WW}	g_2^{WW}	g_4^{WW}
$c_{H\square}$	0.1213	0	0	0	0	0	0	0	0	0	0	0
c_{HD}	0.2679	-0.0831	0	0	0	0	0	0	-0.1320	-0.1560	0	0
c_{HW}	0	0	-0.0929	-0.0513	-0.0283	0	0	0	0	0	-0.1212	0
CHWB	0.1529	-0.0613	-0.0513	0.0323	0.0513	0	0	0	0.1763	0.0360	0	0
c_{HB}	0	0	-0.0283	0.0513	-0.0929	0	0	0	0	0	0	0
$c_{H\bar{W}}$	0	0	0	0	0	-0.0929	-0.0513	-0.0283	0	0	0	-0.1212
CHWB	0	0	0	0	0	-0.0513	0.0323	0.0513	0	0	0	0
$c_{H\bar{B}}$	0	0	0	0	0	-0.0283	0.0513	-0.0929	0	0	0	0

Comparison of EFT Modeling

- Mass Eigenstates useful for simulation in experiment
 - Need to be able to generate samples in both Mass (Amplitude/Higgs) and Gauge Eigenstate basis (Warsaw)
 - JHUGen v7.5.1 parameterize directly in anomalous couplings
 - SMEFTSim v 2.1 parameterize in Warsaw Basis

 V_3

Φ

Agreement between JHUGen (Amplitude Basis) and SMEFTSim (Warsaw Basis) Jeffrey Davis (JHU)

Comparison of EFT Modeling VBF VBF 3.5 0.01 f_{12} Zγ 3 SMEFTsim SM & C_{HWB}=10 0.008 JHUGen SM & C_{HWB}=10 2.5 WW 0.006 V_3 2 f_{11} 1.5 Φ_1 0.004 0.002 Φ 0.5 -0.8 -0.6 -0.4 -0.2 0_{VBF} 0.2 0.4 0.6 0.8 cosθ_{1,2} 0^L 150 200 q^{VBF}[GeV] 50 100 250 300 350 0.25 0.2 EFT introduces $\gamma\gamma$ and $Z\gamma$ fusion enhanced contributions at low q^2 0.15 0.1 VV->H Example: Simulate SM & \tilde{C}_{HWB} = 10 0.05 $\widetilde{C}_{HWB} = -0.0513g_4^{ZZ} + 0.0323g_4^{Z\gamma} + 0.0513g_4^{\gamma\gamma}$ 2 Φ^{VBF} Jeffrey Davis (JHU)

Sign Conventions in Various Tools

- Relative sign between $c_{Z\gamma}$ in **JHUGen** and **SMEFTSim** are opposite
- Interference between $Z\gamma$ couplings and others depend on relative sign

Summary of sign conventions

(1) $\epsilon_{0123} = +1$ in MadGraph, JHUGen, and Analytical $e^{0123} = +1 \Rightarrow e_{0123} = -1$ in HAWK (2) $D_{\mu} = \partial_{\mu} - i \frac{e}{2s_{w}} \sigma^{i} W_{\mu}^{i} - i \frac{e}{2c_{w}} B_{\mu}$ in MadGraph and Analytical $D_{\mu} = \partial_{\mu} - i \frac{e}{2s_{w}} \sigma^{i} W_{\mu}^{i} + i \frac{e}{2c_{w}} B_{\mu}$ in HAWK and JHUGen

Interference effects between $c_{Z\gamma}$ and SM $c_{\gamma\gamma}$ couplings dependent on sign convention

EFT Analysis

 Measure Higgs cross section as a function of anomalous couplings

$$\underbrace{\frac{d\,\sigma(i\to H\to f)}{d\vec{\Omega}}}_{\propto} \underbrace{\left(\sum \alpha_{jk}^{(i)} a_j a_k\right) \left(\sum \alpha_{lm}^{(f)} a_l a_m\right)}_{\left\langle\Gamma_{\rm tot}\right\rangle}$$

Maximum likelihood calculated for EFT hypothesis to match measured cross section/kinematic distributions

 α are functions of kinematic observables $\overrightarrow{\Omega}$ and can usually be factorized into both production and decay

 Γ_{tot} purely dependent on anomalous couplings

Each event has a probability of belonging to a certain hypothesis

13

EFT Analysis

$$\sigma(i \to H \to f) \propto \frac{\left(\sum \alpha_{jk}^{(i)} a_j a_k\right) \left(\sum \alpha_{lm}^{(f)} a_l a_m\right)}{\Gamma_{\text{tot}}} \qquad \begin{array}{l} \text{Total width directly dependent} \\ \text{on anomalous couplings} \end{array}$$

$$\Gamma_{\text{known}} = \Gamma_{\text{tot}}^{\text{SM}} \times \sum_{f} \left(\frac{\Gamma_{f}^{\text{SM}}}{\Gamma_{\text{tot}}^{\text{SM}}} \times \frac{\Gamma_{f}}{\Gamma_{f}^{\text{SM}}}\right) = \sum_{f} \Gamma_{f}^{\text{SM}} R_{f} \qquad (\text{Function of anomalous couplings})$$

$$f = b\overline{b}, c\overline{c}, W^{+}W^{-}, gg, \tau^{+}\tau^{-}, ZZ/Z\gamma^{*}/\gamma^{*}\gamma^{*}, Z\gamma, \gamma\gamma, \mu^{+}\mu^{-}$$
• Analytic formulas are calculated for R_{f}

$$\begin{aligned} R_{\gamma\gamma} = & 1.61011 \left(\frac{g_1^{WW}}{2}\right)^2 + 0.07408 \,\kappa_t^2 - 0.69098 \left(\frac{g_1^{WW}}{2}\right) \kappa_t + 0.00002 \,\kappa_b^2 + 0.06831 \,\kappa_Q^2 \\ & -0.00186 \,\kappa_t \kappa_b + 0.00912 \,\left(\frac{g_1^{WW}}{2}\right) \kappa_b + 0.14231 \,\kappa_t \kappa_Q - 0.00181 \,\kappa_b \kappa_Q - 0.66373 \,\left(\frac{g_1^{WW}}{2}\right) \kappa_Q \\ & +0.20543 \,\tilde{\kappa}_t^2 + 0.00006 \,\tilde{\kappa}_b^2 - 0.00300 \,\tilde{\kappa}_t \tilde{\kappa}_b + 0.18235 \,\tilde{\kappa}_Q^2 + 0.38709 \,\tilde{\kappa}_t \tilde{\kappa}_Q - 0.00269 \,\tilde{\kappa}_b \tilde{\kappa}_Q \end{aligned}$$

Sensitivity to EW corrections

• Sometimes EW corrections are modelled as effective point-like couplings $g_2^{Z\gamma}$ and $g_2^{\gamma\gamma}$ which model $H \to Z\gamma, \gamma\gamma$

MELA Observables

- Events have many kinematic observables
- We construct observables that utilize all kinematic information

 $\left(\sum \alpha_{jk}^{(i)} a_j a_k\right) \left(\sum \alpha_{lm}^{(f)} a_l a_m\right)$ $\Gamma_{\rm tot}$

MELA calculates optimal observables from matrix elements to distinguish between various anomalous coupling hypotheses

Constraints on EFT couplings

Conclusion

- Careful construction of MELA discriminants allows for tighter constraints on specific EFT couplings
 - Amplitude (mass-eigenstate) basis clearly separates event topologies to make optimal MELA observables
 - Use external constraints from non-EFT measurements
 - W mass, $H \rightarrow \gamma \gamma$, $H \rightarrow Z \gamma$
 - Rotate results back to Warsaw (gauge-eigenstate) basis to place constraints on eft couplings in different basis
- JHUGen package used extensively for EFT analysis on LHC
- Sensitivity to $g_2^{Z\gamma,SM}$, $g_2^{\gamma\gamma,SM}$ implies sensitivity to NLO EW corrections.