NLO production of HH, ZH and ZZ by gluon fusion, in the high-energy limit

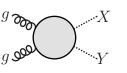
EPS-HEP Conference 2021 - Parallel T09

J. Davies

US UNIVERSITY OF SUSSEX

July 27, 2021

Gluon fusion amplitudes are interesting at the LHC despite loop suppression: enhanced by large gluon PDF.



$$HH$$
 • gives access to Higgs self-coupling λ

• $-5.0 < \lambda/\lambda_{SM} < 12.0$

[CERN-EP-2019-099]

• gg is the dominant production channel (10x)

ZZ • significant background to $H \rightarrow 4I$

- ullet constrains Higgs width via H o ZZ diagrams
- sub-leading cf. guark-induced, but ~60% of total NNLO

ZH •
$$H \rightarrow b\bar{b}$$
 discovery

- \bullet sub-leading cf. guark-induced, but \sim 10% of total
- large scale uncertainties

Amplitude structure:

$$\mathcal{M}^{\mu
u
ho\sigma} = \sum_{i} \mathcal{A}_{i}^{\mu
u
ho\sigma} \mathcal{F}_{i}$$

$$HH: i = \{1, 2\}, \quad ZZ: i = \{1, \dots, 18\}, \quad ZH: i = \{1, \dots, 6\}.$$

Two-loop computations of such form factors F_i are difficult:

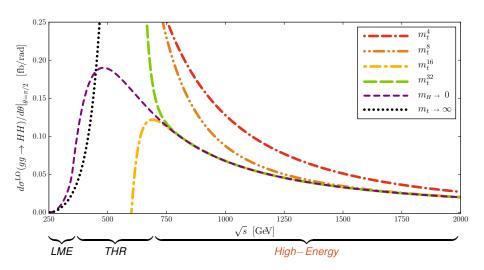
- ▶ Depend on many scales, s, t, m_t, m_H, m_Z
- ► Feynman integrals are complicated
- ... not known analytically!

Numerical results exist, and expansions in various limits:

- ▶ large-m_t
 - ► threshold
 - ▶ small-p_T
 - high-energy

Expansions

Seek an expansion in the region $s, t \gg m_t^2 > \{m_H^2, m_Z^2\}$:



(Incomplete) NLO Status

HH	• LO	[Glover,van der Bij '88]
	NLO HEFT	[Dawson,Dittmaier,Spira '98]
	 NLO LME+THR Padé 	[Gröber,Maier,Rauh '17]

NLO small-p_T [Bonciani,Degrassi,Giardino,Gröber '18]
 NLO numerical [Borowka,Greiner,Heinrich,Jones,Kerner,Schlenk,Zicke '16]
 [Baglio,Campanario,Glaus,Mühlleitner,Spira,Streicher '18]

ZΗ

ZZ •LO

NLO (massless) [Caola,Melnikov,Röntsch,Tancredi '15]
 NLO LME [Dowling,Melnikov '15]

NLO LINE
 NLO numerical [Agarwal,Jones,von Manteuffel '20]

Brønnum-Hansen,Wang '21]

• LO

[Dicus.Kao '88, Kniehl '90]

• NLO LME [Hasselhuhn,Luthe,Steinhauser '17]

• NLO small-p_T [Alasfar,Degrassi,Giardino,Gröber,Vitti '21]

NLO numerical [Chen,Heinrich,Jones,Kerner,Klappert,Schlenk '20]
 NLO high-energy + numerical [Wang, Xu, Xu, Yang '21]

+ various higher-order efforts, mostly HEFT and LME

High-Energy Expansion

Seek an expansion in the region $s, t \gg m_t^2 > \{m_\mu^2, m_\tau^2\}$:

- 1. FFs in terms of Feynman integrals: $I(\{m_H^2, m_7^2\}, m_t^2, s, t, \epsilon)$,
- 2. Expand for $\{m_{H}^{2}, m_{Z}^{2}\} \rightarrow 0$:

$$I(m_H^2,...) = I(0,...) + m_H^2 I'(0,...) + \cdots,$$

- 3. IBP reduce integrals to Master Integrals: $J(\{0,0\}, m_t^2, s, t, \epsilon)$,
- 4. Determine MIs as an expansion around $m_t^2 = 0$:

$$J(\{0,0\},m_t^2,s,t,\epsilon) = \sum C_{ijk}(s,t) \,\, \epsilon^i \,\, (m_t^2)^j \,\, \log(m_t^2)^k \,.$$

$$J(\{0,0\}, m_t^2, s, t, \epsilon) = \sum_{i,j,k} C_{ijk}(s,t) \epsilon^{i} (m_t^2)^{j} \log(m_t^2)^{k}$$

To determine $C_{ijk}(s, t)$:

Introduction

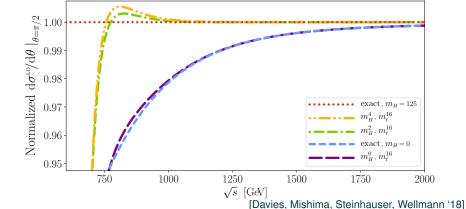
1. Differentiate MIs w.r.t. m_t^2 , IBP reduce result:

$$\frac{d}{d m_t^2} \vec{J} = M(m_t^2, s, t, \epsilon) \cdot \vec{J},$$

- 2. Substitute ansatz \rightarrow coupled system of *linear* equations for C_{ijk} ,
- 3. Boundary conditions: determine leading expansion terms using Expansion-by-Regions, solve linear system for higher C_{ijk} . [$C_{ijk}(s,t)$: Harmonic PolyLogarithms with polynomial coefficients].

High-Energy Expansion

Convergence of m_H expansion in LO $gg \rightarrow HH$:



 m_H^0 : %-level agreement (reproduces exact $m_H = 0$ curve well)

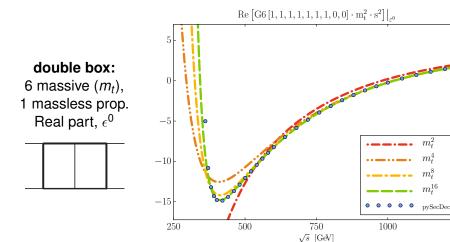
 m_H^2 , m_H^4 : %-level agreement

Master Integral Comparison

Introduction

MI-level comparison: m_t^2 expansion vs. pySecDec numerical values:

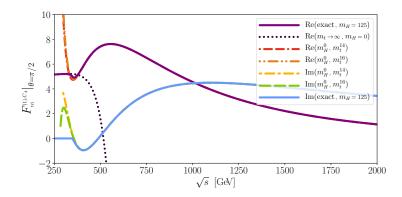
[Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke '18]



1250

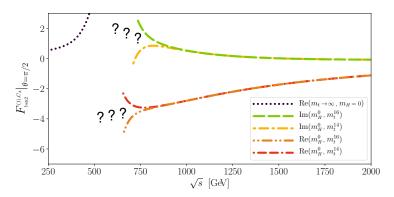
Renorm. and IR subtraction: $F_i^{(1),fin} = F_i^{(1),IR-div} - K_g^{(1)}F_i^{(0)}$.

In $gg \rightarrow HH$, NLO F_{tri} known analytically (from $gg \rightarrow H$):



Form Factor Expansions

 $gg \rightarrow HH, \, F_{box}$ form factors are not known analytically for comparison:



Form factors contain logs which diverge at $4m_t \approx 700 \text{GeV}$.

Padé Approximants

Approximate a function f(x) using a rational polynomial:

$$f(x) \approx [n/m](x) = \frac{a_0 + a_1x + a_2x^2 + \dots + a_nx^n}{1 + b_1x + b_2x^2 + \dots + b_mx^m}.$$

Use series coefficients of f(x) to fix $a_0, \ldots, a_n, b_1, \ldots, b_m$.

- Agrees with series to order n + m (but not beyond)
- ightharpoonup Can be a better approximation of f(x) than the truncated series.
- ► Even beyond the radius of convergence!

Padé Approximants: applied to m_t expansion

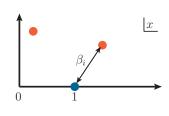
In small- m_t expansions:

Introduction

- ▶ Replace $m_t^2 \rightarrow m_t^2 x$,
- \triangleright Set variables (m_t , s, t, etc) to numerical values,
- ightharpoonup Construct Padé approximants at x = 0, then evaluate at x = 1: m_t^{32} exp. $\implies n+m \le 16$: [7/8], [8/7], [7/9], [8/8], [9/7].

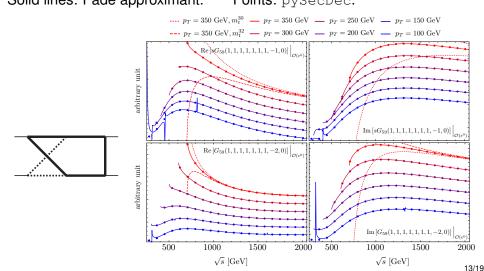
Central value and error:

- Padé approximants have poles in the complex x plane, which can lead to poor behaviour if close to x = 1.
- Compute a weighted average and deviation, with $\omega_i = \beta_i^2 / \sum_i \beta_i^2$. β_i is the distance from x = 1 to the nearest pole.



Padé Approximants: Master Integral Level

Dashed lines: m_t^{30} , m_t^{32} . Smaller p_T values: series doesn't converge. Solid lines: Padé approximant. Points: pySecDec.

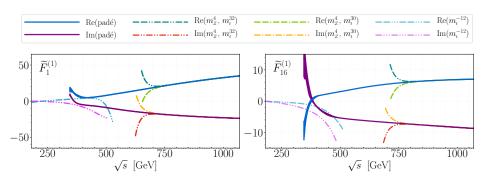


Form Factor Approximations

Introduction

Two example Form Factors for $gg \rightarrow ZZ$:

- ▶ the high-energy exp. diverges around $\sqrt{s} \approx 750 \text{GeV}$ as usual
- ▶ the Padé-based approximation continues to lower \sqrt{s} values



Results

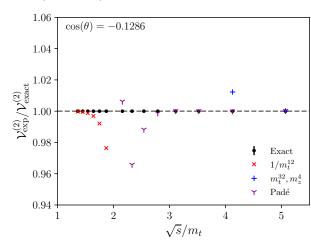
 V_{fin} : "virtual finite cross-section".

High-Energy Expansion

Introduction

Padé-improved V_{fin} shows excellent agreement with pySecDec-based evaluation above $\sqrt{s} \approx 3m_t$. [Agarwal, Jones, von Manteuffel '20]

Padé Approximants

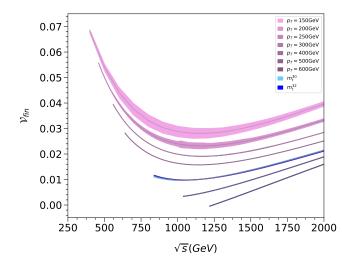


$gg o ZH \ V_{\textit{fin}}$

Similarly, we construct a V_{fin} for ZH.

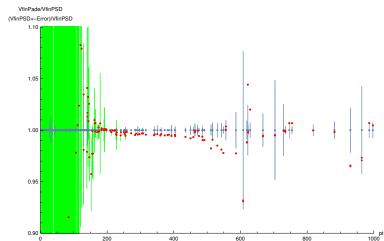
[Davies, Mishima, Steinhauser '20]

High-energy exp does not converge for $p_T \leq 300$.



Comparison with $gg \rightarrow ZH$ numerical V_{fin}

In progress: $gg \rightarrow ZH$ comparison. Blue: pySecDec, Red+Green: Padé



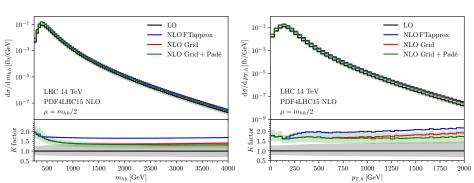
pySecDec data points: [Chen,Heinrich,Jones,Kerner,Klappert,Schlenk]

→ HH Distributions

Introduction

Add real radiation, convolute with PDF. Impact of including high-energy points in hharid V_{fin} :

[Davies, Heinrich, Jones, Kerner, Mishima, Steinhauser, Wellmann '19]



Conclusions

Two-loop 2 \rightarrow 2 amplitudes which depend on extra mass scales are not known analytically.

Nonetheless we can learn about their behaviour through expansions in various limits, and direct numerical evaluations.

High-energy expansions give the behaviour of the amplitudes in a region which is difficult to describe precisely by numerical evaluation.

► Padé approximants significantly improve the high-energy description