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= The High-luminosity phase of LHC (HL-LHC) is expected to produce 5-7 times 1-D convolutional network (1-D CNN) for o  The NNs outperform the OF algorithm as shown in figure 6
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= The Liquid-Argon (LAr) Calorimeters of ATLAS measure the energy of of the CNNs and their and 4-Conv networks sequence is first processed by the tag- | . . . | - ' ' i
tagging part, compared = ReLU activation function oing layers and then by the energy re- Figure 5:Resolution as a function of the distance to Flgure 6:Energy resolution for different al

electromagnetic showers of photons/electrons using their ionisation signals evious hieh enerey deposit (ap) corithms
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= Sampled and digitized at 40MHz (figure 1)
- Energy reconstruction in real-time using FPGAs FPGA Performance
= Latency of about a few hundred nano seconds required by the trigger data path
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Figure 1:Left - cutout of the LAr calorimeter, right - shaped and digitized LAr calorimeter pulse Figure 4:Left - RNN processing of calorimeter samples for RNNs with sliding window, right - Table 1:Occupancy of the NN implementations on a Stratix-10 FPGA
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