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Introduction

The High-luminosity phase of LHC (HL-LHC) is expected to produce 5-7 times

the nominal instantaneous luminosities

Up to 140-200 simultaneous proton-proton interactions every 25 ns

Requires major upgrades to the ATLAS detector to meet the physics goals

Run 1 Run 2 Run 3 Run 4
2011-2013 2015-2018 2022-2024 2027-2040
30 fb⁻¹ 190 fb⁻¹ 350 fb⁻¹ 3000 fb⁻¹

LHC HL-LHC

Energy Reconstruction in LAr Calorimeter

The Liquid-Argon (LAr) Calorimeters of ATLAS measure the energy of

electromagnetic showers of photons/electrons using their ionisation signals

Bipolar pulse shape (total length of up to 600 ns, 25 BCs)
Sampled and digitized at 40MHz (figure 1)

Energy reconstruction in real-time using FPGAs
Latency of about a few hundred nano seconds required by the trigger data path

Current energy reconstruction uses the optimal filtering algorithm with a
maximum finder (OFMax)
Using five samples around the pulse shape peak

Decreased performance at the HL-LHC

Full electronics readout chain will be upgraded for Run 4
Increased computing capacity with Stratix-10 FPGAs

In the current design options, each FPGA processes 384 or 512 LAr calorimeter cells

Figure 1:Left - cutout of the LAr calorimeter, right - shaped and digitized LAr calorimeter pulse

Convolutional Networks

1-D convolutional network (1-D CNN) for

sequence processing consisting of a

two-staged architecture: tagging and energy

reconstruction
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Figure 2:Signal effi-

ciency and background

rejection ROC curves

of the CNNs and their

tagging part, compared

to the OFMax

Pulse tagging
sub-network (2 layers)
First trained to detect energy

deposits above noise

threshold (signal)

Sigmoid activation function

Energy reconstruction

sub-network (1-2 layers)
Uses the results of the

tagging sub-network and raw

ADC samples

One or two reconstruction

layers resulting in 3-Conv

and 4-Conv networks

ReLU activation function
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Figure 3:Architecture of a CNN with

four convolutional layers. The input

sequence is first processed by the tag-

ging layers and then by the energy re-

construction layers.

Recurrent Neural Networks

Recurrent neural networks (RNNs) are a family of neural networks for
processing sequential data
Vanilla RNN with ReLU activation is the simplest recurrent structure

Long short-term memory (LSTM) with a gated cell design and with sigmoid and tanh

activations can handle long term effects better

Two ways to feed data to RNNs as shown in figure 4
Sliding window with a window size of 5 including one sample before the pulse

Continuous stream of digitized samples for single cell LSTM with unlimited information of

past events
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Figure 4:Left - RNN processing of calorimeter samples for RNNs with sliding window, right -

stream for single cell LSTM

Network Performance

The NNs outperform the OF algorithm as shown in figure 6

The NNs better reconstruct pulses distorted by previous events (figure 5)
Proportionally to the usage of past information
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3-Conv CNN
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LSTM (single)
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Figure 5:Resolution as a function of the distance to

previous high energy deposit (gap)
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Figure 6:Energy resolution for different al-

gorithms

FPGA Performance

Good agreement between firmware and

software solutions is observed as shown on

figure 7

Table 1 shows the resource usage for
different methods
Multiplexing is used to process multiple calorimeter

cells with one network instance

Reasonable resource usage for

implementation on the real hardware for

Phase-II

0.1− 0.05− 0 0.05

(software)TE

(software)
T

(firmware) - ETE

3−10

2−10

1−10

1

N
or

m
al

iz
ed

 to
 u

ni
ty

Vanilla-RNN(sliding)

LSTM(single)

LSTM(sliding)

3-Conv CNN

4-Conv CNN

AREUS Simulation

) = (0.5125, 0.0125)φ,ηEMB Middle (

 > 240 MeV
pred

T
> = 140, Eµ<

Figure 7:Relative deviation of the

firmware and software results

Multiplexing Freq Latency LAr Resource Usage

Fmax [MHz] clkcore cycles Channels DSP/ALM

3-Conv 6 344 81 390 0.8% / 1.5%

Vanilla 15 640 120 576 2.6% / 0.6%

Table 1:Occupancy of the NN implementations on a Stratix-10 FPGA


