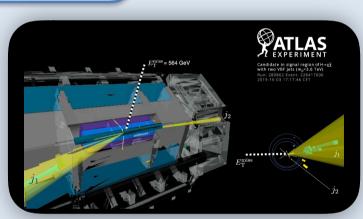
Search for invisibly decaying Higgs bosons produced in vector boson fusion with ATLAS in Run 2

ATLAS-CONF-2020-008

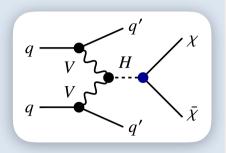

Introduction

- Astrophysical measurements strongly imply existence of dark matter (for example in form of WIMPs χ)
- Higgs boson might act as portal to dark sector
- LHC signature: invisibly decaying Higgs bosons
- Standard Model: $H \rightarrow ZZ \rightarrow 4\nu$ with *BR*=0.12 %
- $^{\odot}\,$ Use full Run 2 data set (139 $fb^{-1})$ collected with ATLAS detector
- Important improvements w.r.t. to previous iterations:

forward pile-up rejection, increased MC statistics, more data, improved signal acceptance and background rejection, improved Rebalance and Smear method for multijet estimate

Signal

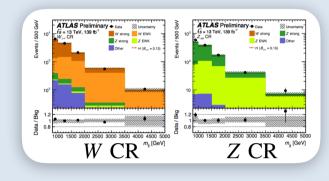
- VBF Higgs boson production most sensitive channel: two high-energetic jets with large rapidity gap allows for background rejection
- Signal expected at large $E_{\mathrm{T}}^{\mathrm{miss}}$

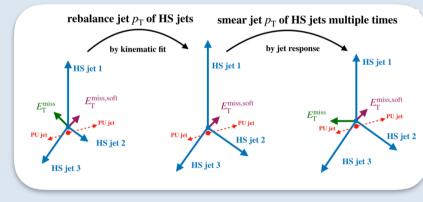


Important signal region selections:

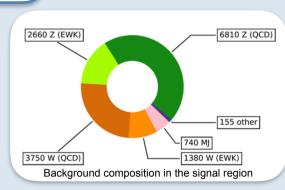
$E_{\rm T}^{\rm miss} > 200 { m ~GeV}$	no leptons	$fJVT_{1,2} < 0.5$	$\eta_0\cdot\eta_1<0$
$H_{\rm T}^{\rm miss} > 180 {\rm ~GeV}$	no photons	$p_{\rm T,1} > 80 {\rm ~GeV}$	$\Delta \phi_{jj} < 2$
$2 \le n_{\rm jet} \le 4$	$m_{\rm jj} > 800~{ m GeV}$	$p_{\mathrm{T},2} > 50~\mathrm{GeV}$	$\Delta \eta_{jj} > 3.8$

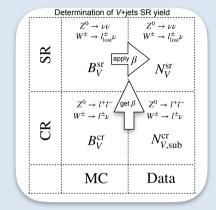
• Allow for initial and final state radiation ($n_{\text{jet}} = 3,4$) with centrality C and m_{rel} cut

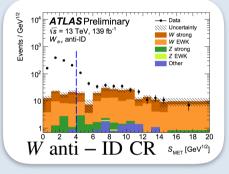

$$\begin{split} C_{\text{jet}=3,4} &= \exp\left(-\frac{4}{(\eta_1 - \eta_2)^2} \cdot (\eta_j - \frac{\eta_1 + \eta_2}{2})^2\right) < 0.6\\ m_{i=3,4,\text{rel}} &= \min\{m_{1i}, m_{2i}\}/m_{\text{jj}} < 0.05 \end{split}$$

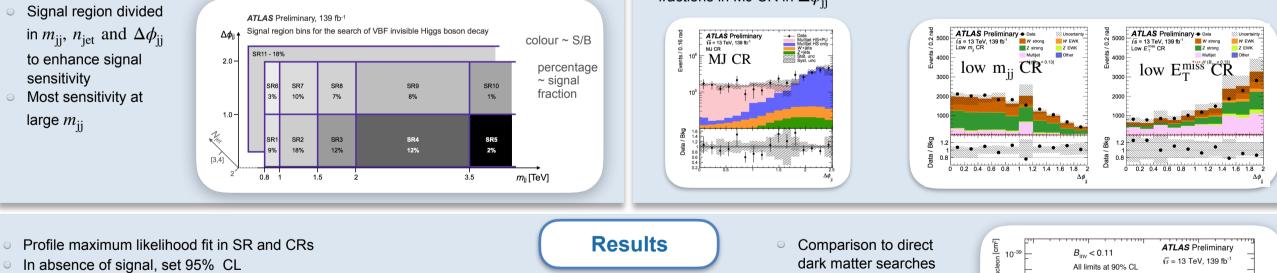

Main backgrounds are V+jets processes:

Backgrounds

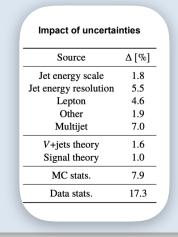

- $Z \rightarrow \nu \nu$ and $W \rightarrow l_{\rm lost} \nu$ both QCD and EWK production
- Reduced Monte Carlo statistical uncertainty by means of importance sampling w.r.t. m_{ii}
- CRs with one and two identified leptons used to constrain V+jets backgrounds
 Extrapolate from CR to SR with independent
- scale factors β (ratio data/MC) for W and Z

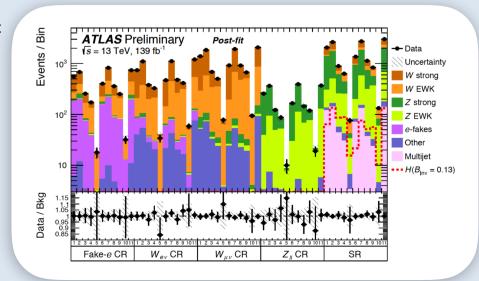


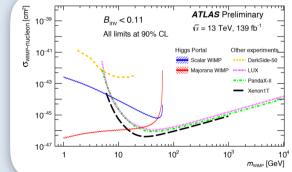

- Electron fakes in W CR via template fit in anti-ID CR:
- $^{>}$ Use MET significance $S_{\rm MET} > 4~\sqrt{\rm GeV}$ as discriminator of fake-e and e
- Measure ratio ${\it R}$ of high to low $S_{\rm MET}$ in fake-enriched anti-ID CR
- Scale fake-*e* in *W* CR by applying *R* in low $S_{\rm MET}$ *W* CR
- Multijet (MJ) background expected to be small but important due to large uncertainties
 MJ background estimated with improved data-driven 'Rebalance and Smear'

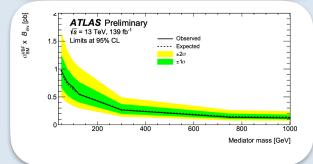


- Split MJ background into HS-only and HS+PU topology, normalise fractions in MJ CR in $\Delta \phi_{jj}$
- Final prediction obtained in $E_{\rm T}^{\rm miss}$ -triggered data in low $m_{\rm jj}$ and low $E_{\rm T}^{\rm miss}$ CRs






upper limit on invisible Standard Model Higgs boson branching fraction $B_{
m inv}$


- Observed and expected: 13 %
- Statistics and multijet modelling dominant uncertainties

- Comparison to direct dark matter searches by interpretation in terms of WIMP-nucleon cross section
- Complementarity of direct searches and LHC searches for exclusion regions
- Also obtain upper limit on $\sigma \cdot B_{inv}$ for other scalar mediator particles as a function of its mass: 0.97 at 50 GeV to 0.12 for 1 TeV

Arthur Linß

SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

