Addressing the Muon Anomalies with Muon-Flavored Leptoquarks

Anders Eller Thomsen

with A. Greljo & P. Stangl [2103.13991]

EPS-HEP, July 30th 2021

 $\boldsymbol{u}^{\scriptscriptstyle b}$

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

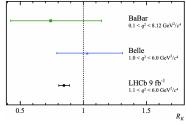
$b \to s \ell^+ \ell^-$ anomalies

• LHCb measurements of $R_K^{[1,6]}$, $R_{K^*}^{[1,1,6]}$, and $R_{K^*}^{[0.045,1.1]}$ deviate from SM at 3.1σ , 2.5σ , and 2.3σ , respectively

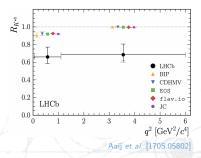
$$R_{K^{(*)}} = \frac{\mathrm{BR}(B \rightarrow K^{(*)} \mu^+ \mu^-)}{\mathrm{BR}(B \rightarrow K^{(*)} e^+ e^-)}$$

- Average ATLAS, CMS, and LHCb $B_s \rightarrow \mu^+ \mu^$ branching ratio deviate from SM by 2σ Altmanshofer, Stangl [2103.13370]
- Angular observables in $B \to K^* \mu^+ \mu^-$ and branching ratios in $B \to K^{(*)} \mu^+ \mu^-$ and $B_s \to \phi \mu^+ \mu^-$
- Consistent picture emerges in the EFT (primarily a left-handed current): global 3.9σ significance for NP hypothesis

Lancierini et al. [2104.05631]



Aaij et al. [2103.11769]



EPS-HEP '21

1 / 11

$b \to s \ell^+ \ell^-$ anomalies

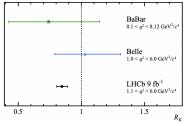
• LHCb measurements of $R_K^{[1,6]}$, $R_{K^*}^{[1.1,6]}$, and $R_{K^*}^{[0.045,1.1]}$ deviate from SM at 3.1σ , 2.5σ , and 2.3σ , respectively

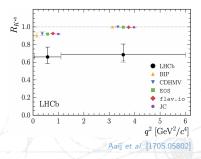
$$R_{K^{(*)}} = \frac{\mathrm{BR}(B \rightarrow K^{(*)} \mu^+ \mu^-)}{\mathrm{BR}(B \rightarrow K^{(*)} e^+ e^-)}$$

- Average ATLAS, CMS, and LHCb $B_s \rightarrow \mu^+ \mu^$ branching ratio deviate from SM by 2σ Altmanshofer, Stangl [2103.13370]
- Angular observables in $B \to K^* \mu^+ \mu^-$ and branching ratios in $B \to K^{(*)} \mu^+ \mu^-$ and $B_s \to \phi \mu^+ \mu^-$
- Consistent picture emerges in the EFT (primarily a left-handed current): global 3.9σ significance for NP hypothesis

Lancierini et al. [2104.05631]

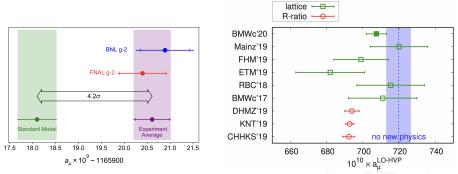
B anomalies? No, muon anomalies!





EPS-HEP '21

1 / 11



Abi et al. [2104.03281]

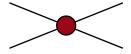
Borsany et al. [2002.12347]

- First measurement of the Fermilab Muon g-2 Experiment is compatible with the Brookhaven experiment. Combined 4.2σ discrepancy with the Muon g-2 Theory Initiative. Asymmet al. [2006.04822]
- HVP is the dominant error of the SM prediction. Lattice results (BMWc) in potential disagreement with the data-driven calculations (*R*-ratio) used in SM prediction.

Muon anomalies in \mathcal{L}_6

Effective description of the anomalies with dimension-6 operators:

$$b \to s \ell^+ \ell^- : \quad \frac{V_{ts}}{(10 \text{ TeV})^2} (\bar{b}_{\mathrm{L}} \gamma_\mu s_{\mathrm{L}}) (\bar{\mu}_{\mathrm{L}} \gamma^\mu \mu_{\mathrm{L}})$$

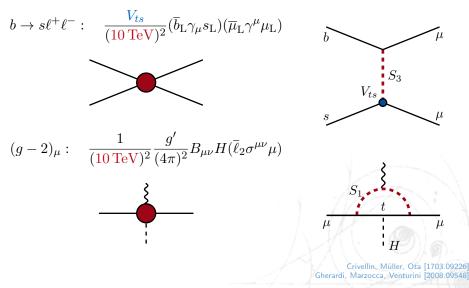


$$(g-2)_{\mu}: = \frac{1}{(10 \,\mathrm{TeV})^2} \frac{g'}{(4\pi)^2} B_{\mu\nu} H(\bar{\ell}_2 \sigma^{\mu\nu} \mu)$$

Anders Eller Thomsen (Bern U.)

Muon anomalies in \mathcal{L}_6

Effective description of the anomalies with dimension-6 operators:



Accidental symmetries of $\mathcal{L}_{\rm SM}$:

$\mathrm{U}(1)_B \times \mathrm{U}(1)_{L_e} \times \mathrm{U}(1)_{L_{\mu}} \times \mathrm{U}(1)_{L_{\tau}}$

Accidental symmetries of $\mathcal{L}_{\rm SM}$:

$$\mathrm{U}(1)_B \times \mathrm{U}(1)_{L_e} \times \mathrm{U}(1)_{L_{\mu}} \times \mathrm{U}(1)_{L_{\tau}}$$

Proton decay is strongly constrained:

$$\mathcal{L}_{\text{eff}} \supset \frac{1}{\Lambda_B^2} (QQ)(QL), \qquad \Lambda_B \gtrsim 10^{12} \,\text{TeV}$$

Accidental symmetries of $\mathcal{L}_{\rm SM}$:

$$\mathrm{U}(1)_B \times \mathrm{U}(1)_{L_e} \times \mathrm{U}(1)_{L_{\mu}} \times \mathrm{U}(1)_{L_{\tau}}$$

Proton decay is strongly constrained:

$$\mathcal{L}_{\text{eff}} \supset \frac{1}{\Lambda_B^2}(QQ)(QL), \qquad \Lambda_B \gtrsim 10^{12} \,\text{TeV}$$

 $\ell_i \rightarrow \ell_j \gamma$ (LFV) is strongly constrained:

e.g. Calibbi et al. [2104.03296]

$$\mathcal{L}_{\text{eff}} \supset \frac{e \, v}{(4\pi)^2 \Lambda_{ij}^2} (\bar{\ell}_i \sigma_{\mu\nu} P_{\text{R}} \ell_j) F^{\mu\nu} \qquad \begin{cases} \Lambda_{\mu\tau} > 30 \,\text{TeV} \\ \Lambda_{e\mu} > 3 \cdot 10^4 \,\text{TeV} \end{cases}$$

Best fit of Δa_{μ} is $\Lambda_{\mu\mu} = 14 \,\mathrm{TeV}$

Accidental symmetries of $\mathcal{L}_{\rm SM}$:

$$\mathrm{U}(1)_B \times \mathrm{U}(1)_{L_e} \times \mathrm{U}(1)_{L_{\mu}} \times \mathrm{U}(1)_{L_{\tau}}$$

Proton decay is strongly constrained:

$$\mathcal{L}_{\text{eff}} \supset \frac{1}{\Lambda_B^2}(QQ)(QL), \qquad \Lambda_B \gtrsim 10^{12} \,\text{TeV}$$

 $\ell_i
ightarrow \ell_j \gamma \; ({
m LFV})$ is strongly constrained:

e.g. Calibbi et al. [2104.03296]

$$\mathcal{L}_{\text{eff}} \supset \frac{e \, v}{(4\pi)^2 \Lambda_{ij}^2} (\bar{\ell}_i \sigma_{\mu\nu} P_{\text{R}} \ell_j) F^{\mu\nu} \quad \begin{cases} \Lambda_{\mu\tau} > 30 \,\text{TeV} &= \Lambda_{\mu\mu} \sqrt[4]{\frac{m_{\tau}}{m_{\mu}}} \\ \Lambda_{e\mu} > 3 \cdot 10^4 \,\text{TeV} &= 10^3 \Lambda_{\mu\mu} \sqrt[4]{\frac{m_e}{m_{\mu}}} \end{cases}$$

Best fit of Δa_{μ} is $\Lambda_{\mu\mu} = 14 \,\mathrm{TeV}$

Accidental symmetries of $\mathcal{L}_{\rm SM}$:

$$\mathrm{U}(1)_B \times \mathrm{U}(1)_{L_e} \times \mathrm{U}(1)_{L_{\mu}} \times \mathrm{U}(1)_{L_{\tau}}$$

Proton decay is strongly constrained:

$$\mathcal{L}_{\text{eff}} \supset \frac{1}{\Lambda_B^2}(QQ)(QL), \qquad \Lambda_B \gtrsim 10^{12} \,\text{TeV}$$

 $\ell_i
ightarrow \ell_j \gamma$ (LFV) is strongly constrained:

e.g. Calibbi et al. [2104.03296]

$$\mathcal{L}_{\text{eff}} \supset \frac{e \, v}{(4\pi)^2 \Lambda_{ij}^2} (\bar{\ell}_i \sigma_{\mu\nu} P_{\text{R}} \ell_j) F^{\mu\nu} \quad \begin{cases} \Lambda_{\mu\tau} > 30 \,\text{TeV} &= \Lambda_{\mu\mu} \sqrt[4]{\frac{m_{\tau}}{m_{\mu}}} \\ \Lambda_{e\mu} > 3 \cdot 10^4 \,\text{TeV} &= 10^3 \Lambda_{\mu\mu} \sqrt[4]{\frac{m_e}{m_{\mu}}} \end{cases}$$

Best fit of Δa_{μ} is $\Lambda_{\mu\mu} = 14 \,\mathrm{TeV}$

No B violation, no LFV, but indications of LFUV

Anders Eller Thomsen (Bern U.)

Muoquarks for muon anomalies

The problem with leptoquarks

TeV scale scalar leptoquarks

Pati-Salam type vector LQs do not have di-quark couplings and are great candidates for combined explanations of Banomalies.

 $\mathcal{L} \supset y(LQ)S + z(QQ)S^*$

lead to violation of SM accidental symmetries:

Baryon number violation: $\Lambda_B \sim \frac{M_S}{\sqrt{yz}}$

• LFV:
$$\Lambda_{ij}^{-2} \sim \frac{(y^{\dagger}y)_{ij}}{M_S^2}$$

5 / 11

The problem with leptoquarks

TeV scale scalar leptoquarks

 $\mathcal{L} \supset y(LQ)S + z(QQ)S^*$

Pati-Salam type vector LQs do not have di-quark couplings and are great candidates for combined explanations of B anomalies.

lead to violation of SM accidental symmetries:

Baryon number violation: $\Lambda_B \sim \frac{M_S}{\sqrt{yz}}$ $z \to 0$

• LFV:
$$\Lambda_{ij}^{-2} \sim \frac{(y^{\dagger}y)_{ij}}{M_S^2}$$

 $y_{i\neq j} \to 0?$

The problem with leptoquarks

TeV scale scalar leptoquarks

Pati-Salam type vector LQs do not have di-quark couplings and are great candidates for combined explanations of *B* anomalies.

lead to violation of SM accidental symmetries:

Baryon number violation: $\Lambda_B \sim {M_S \over \sqrt{y\,z}} \qquad z
ightarrow 0$

• LFV:
$$\Lambda_{ij}^{-2} \sim \frac{(y^{\dagger}y)_{ij}}{M_S^2}$$
 $y_{i \neq j} \rightarrow 0$?

B violation is so problematic that even a dimension-5 contribution $z\sim v/M_{\rm Pl}$ is excluded. Arnold, Formal, Wise [1304.6119] Assad, Formal, Grinstein [1708.06350]

 $\mathcal{L} \supset y(LQ)S + z(QQ)S^*$

 \implies Global symmetries might not be sufficiently robust

Leptoquarks with a $U(1)_X$ symmetry

Impose a local $U(1)_X$ symmetry to rescue scalar leptoquarks examples in Hambye, Heck [1712.04871], Davighi, Kirk, Nardecchia [2007.15016]

Need to have:

- Lepton-flavor-specific charges allowing QL_iS for $i = \mu$ but not for $i = e, \tau$
- An S charge to forbid QQS^* coupling
- A remnant (approximate) LF symmetry

Comprehensive study in Greljo, Soreq, Stangl, AET, Zupan [2107.07518]

Leptoquarks with a $U(1)_X$ symmetry

Impose a local $U(1)_X$ symmetry to rescue scalar leptoquarks examples in Hambye, Heck [1712.04871], Davighi, Kirk, Nardecchia [2007.15016]

Need to have:

- Lepton-flavor-specific charges allowing QL_iS for $i = \mu$ but not for $i = e, \tau$
- An S charge to forbid QQS^* coupling
- A remnant (approximate) LF symmetry

Comprehensive study in Greljo, Soreq, Stangl, AET, Zupan [2107.07518]

Nice to have:

- Universal quark charges
- A single $U(1)_X$ -breaking scalar, Φ , forbidding direct couplings to SM fermions and $QQS^*\Phi^{(*)}$
- A Φ charge allowing $\nu_i\nu_j\Phi^{(*)}$ to populate otherwise forbidden Majorana mass entries

Leptoquarks with a $U(1)_X$ symmetry

Impose a local $U(1)_X$ symmetry to rescue scalar leptoquarks examples in Hambye, Heck [1712.04871], Davighi, Kirk, Nardecchia [2007.15016]

Need to have:

- Lepton-flavor-specific charges allowing QL_iS for $i = \mu$ but not for $i = e, \tau$
- An S charge to forbid QQS^{\ast} coupling
- A remnant (approximate) LF symmetry

Comprehensive study in Greljo, Soreq, Stangl, AET, Zupan [2107.07518]

Nice to have:

- Universal quark charges
- A single $U(1)_X$ -breaking scalar, Φ , forbidding direct couplings to SM fermions and $QQS^*\Phi^{(*)}$
- A Φ charge allowing $\nu_i\nu_j\Phi^{(*)}$ to populate otherwise forbidden Majorana mass entries

Leptoquark \longrightarrow Muoquark

The $B - 3L_{\mu}$ model

	Fields	$\mathrm{SU}(3)_c$	${\rm SU}(2)_{\rm L}$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_{B-3L_{\mu}}$
	$q_{ m L}$	3	2	$^{1}/_{6}$	$1/_{3}$
	$u_{ m R}$	3		$^{2/3}$	$^{1/3}$
SW	$d_{ m R}$	3		$^{-1}/_{3}$	$1/_{3}$
	$\ell_{ m L}$		2	$^{-1}/_{2}$	$\{0, -3, 0\}$
	$e_{ m R}$			-1	$\{0, -3, 0\}$
	$ u_{ m R}$			0	$\{0, -3, 0\}$
	H		2	1/2	0
hnuoquarts {	S_3	$\overline{3}$	3	$1/_{3}$	8/3
	S_1	$\overline{3}$		$1/_{3}$	8/3
	Φ			0	3
X-breaking SM singlet	5			-A	Muonic force

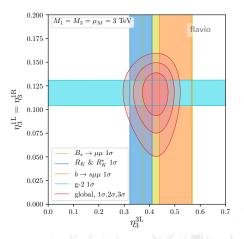
Combined explanation of the anomalies

Anomalies due to the interactions

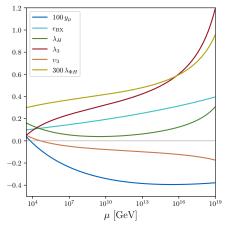
$$\begin{split} \mathcal{L}_{\text{yuk}} \supset -\eta_i^{3\text{L}} \, \overline{q}_{\text{L}}^{c\,i} \ell_{\text{L}}^2 \, S_3 \\ &-\eta_i^{1\text{L}} \overline{q}_{\text{L}}^{c\,i} \ell_{\text{L}}^2 S_1 - \eta_i^{1\text{R}} \overline{u}_{\text{R}}^{c\,i} \mu_{\text{R}} S_1 \end{split}$$

- Decoupling limit $\binom{v_{\Phi} \to \infty}{g_X \to 0}$ ensures NP contribution exclusively from $S_{1,3}$
- Approximate U(2) flavor symmetry Kagan et al. [0903.1794]; Barbieri et al. [1105.2296]
- Existing 1-loop S_{1,3} matching results Gherardi, Marzocca, Venturini [2003.12525]
- Global fit with smelli (also using wilson and flavio)

Best fit favored with $\Delta\chi^2\simeq 62$ over the SM



Radiative stability



 y_u is the muon-Higgs Yukawa; $\epsilon_{\rm BX}$ the $B_\mu – X_\mu$ kinetic mixing; λ_H the Higgs self coupling; λ_3 and υ_3 two S_3 self couplings; $\lambda_{\Phi H}$ the Higgs– Φ portal coupling.

- \blacksquare There are no Landau poles before $M_{\rm Pl}$
- Large radiative corrections to y_{μ} :

$$\delta y_{\mu} = -\frac{3}{(4\pi)^2} \left(1 + \ln\frac{\mu_M^2}{M_1^2}\right) \eta_t^{1\text{L}*} y_t \eta_t^{1\text{R}}$$

Sizable corrections to the Higgs mass:

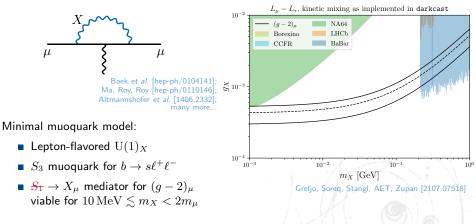
$$\delta\mu_H^2 = -\frac{9(\lambda_{H3} + \kappa_{H3})}{(4\pi)^2}M_3^2\left(1 + \ln\frac{\mu_M^2}{M_3^2}\right)$$

$$+ \frac{3\lambda_{H1}}{(4\pi)^2} M_1^2 \left(1 + \ln \frac{\mu_M^2}{M_1^2}\right)$$

Preferred muoquark masses $M_{1,3} \lesssim {
m few} \times {
m TeV}$ for finite naturalness

Light muon force

Light X_{μ} solution to $(g-2)_{\mu}$



Conclusions and outlook

- Lepton-flavored gauge symmetries provide a good organizing principle for scalar-Leptoquark explanations of the muon anomalies
- Three variations of muoquark models

	Туре А	Type B	Type C
$b \rightarrow s \mu \mu$	S_3	S_3	heavy X
$(g-2)_{\mu}$	S_{1}/R_{2}	light X	S_{1}/R_{2}
	\backslash	/	

- Some ${\rm U}(1)_X$ groups allow for LQs coupling to taus: could address the $R_{D^{(*)}}$ anomaly
- The U(1)_X groups impose non-trivial structure in the neutrino sector: can lead to predictions for neutrino mixing parameters