Explaining the Cabibbo Angle Anomaly

Claudio Andrea Manzari UNIVERSITY OF ZÜRICH

SMEFT 00000 Simplified models

Backup 00

Outline

• The Cabibbo Angle Anomaly

• SMEFT analysis

- Simplified Models
- Conclusions and prospects

Claudio Andrea Manzari

EPS-HEP 2021

Introduction SMEET 000

Simplified models

Conclusions

Backup

The Cabibbo Angle Anomaly I

Claudio Andrea Manzari

Introduction	SMEFT	Simplified models	Conclusions	Backup
000	00000	000000000	00	00

The Cabibbo Angle Anomaly II

SMEFT analysis

BSM explanations can be grouped into 4 classes using an EFT approach with gauge-invariant dimension 6 operators (2102.02825 Crivellin, Hoferichter, C.A.M.)

Introduction	SMEFT	Simplified models	Conclusions	Backup
000	0000	00000000	00	00

4-fermion operators in $\mu \to e\nu\nu$

The only viable mechanism to modify the extraction of G_F proceeds via a modification of the SM operator

 $Q_{\ell\ell}^{2112} = \left(\bar{\ell}_2 \gamma^{\mu} \ell_1\right) \left(\bar{\ell}_1 \gamma^{\mu} \ell_2\right)$

To brings data into agreement within 1σ we need

 $C_{\ell\ell}^{2112} = -1.4 \times 10^{-3} G_F$

Constraints: G_F enters in the computation of EW precision observables Within the reach of future e^+e^- colliders

Claudio Andrea Manzari

Introduction	SMEFT	Simplified models	Conclusions	Backup
000	00000	000000000	00	00

4-fermion operators in $u \to de\nu$

We need constructive interference with the SM in β decays. The only possibility is

$$Q_{\ell q}^{(3)1111} = \left(\bar{\ell}_1 \gamma^\mu \tau^I \ell_1\right) \left(\bar{q}_1 \gamma^\mu \tau^I q_1\right)$$

Introduction SMEFT Simplified models Conclusions

W-u-d couplings

Here the goal is to modify the extraction of V_{us} and V_{ud} on the quark side. Two solutions are possible

$$Q_{\phi ud}^{ij} = \tilde{\phi} i D_{\mu} \phi \bar{u}_i \gamma^{\mu} d_j$$

Generates right-handed W–quark couplings. In addition, a right-handed W-u-s coupling could also account for the difference between $K_{\ell 2}$ and $K\ell 3$ decays

$$Q^{(3)ij}_{\phi q} = \phi^{\dagger} i \overset{\leftrightarrow}{D}{}^{I}_{\mu} \phi \bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j}$$

Due to $SU(2)_L$ invariance, in general effects in $\Delta F = 2$ processes as well as in Z decays are generated.

Claudio Andrea Manzari

EPS-HEP 2021

Backup

SMEFT 0000● Simplified models

Conclusions 00 Backup 00

$W - \ell - \nu$ couplings

Only one operator generates $W{-}\ell{-}\nu$ couplings at tree level

$$Q^{(3)ij}_{\phi\ell} = \phi^{\dagger} \stackrel{\leftrightarrow}{D}^{I}_{\mu} \phi \bar{\ell}_i \gamma^{\mu} \tau^{I} \ell_i \,.$$

 $C_{\phi\ell}^{(3)11}$ affects β decays and the G_F in the same way \implies no effect on CAA! $C_{\phi\ell}^{(3)22}$ only enters in muon decay. CAA points to $C_{\phi\ell}^{(3)22} > 0$.

Constraints: EW precision Observables, Tests of Lepton Flavour Universality

Claudio Andrea Manzari

EPS-HEP 2021

SMEFT 00000 Simplified models

Conclusions 00 Backup 00

Model Building

2 Mechanisms to solve the Cabibbo Angle Anomaly:

- \blacktriangleright new physics in G_F :
 - Singly Charged Scalar Singlet (2010.14504 Crivellin, M., Algueró, Matias)
 - Vector-like Leptons (2008.01113 Crivellin, Kirk, C.A.M., Montull)
 - Vector Boson Triplet (2005.13542 Capdevila, Crivellin, C.A.M., Montull)
- ▶ new physics in β decay:
 - Vector Boson Singlet (2104.07680 Buras, Crivellin, Kirk, C.A.M., Montull)
 - Vector-like Quarks (2001.02853 Cheung, Keung, Lu, Tseng)
 - Vector-like Leptons (2008.01113 Crivellin, Kirk, C.A.M., Montull)
 - Vector Boson Triplet (2005.13542 Capdevila, Crivellin, C.A.M., Montull)

Claudio Andrea Manzari

Conclusions

Backup

Vector Boson Singlet: Z'

• Constraints: $\mu \to e\gamma$, $\mu \to e$ conversion, EW data, LEP 4-electron bounds

Claudio Andrea Manzari

Introduction	SMEFT	Simplified models	Conclusions	Backup
000	00000	00000000	00	00

Vector-like Quarks I

▶ 7 possible Vector-like Quarks representations under $SU(3)_C \times SU(2)_L \times U(1)_Y$

	SU(3)	$SU(2)_L$	$U(1)_Y$
U	3	1	2/3
D	3	1	-1/3
Q_1	3	2	1/6
Q_5	3	2	-5/6
Q_7	3	2	7/6
T_1	3	3	-1/3
T_2	3	3	2/3

Claudio Andrea Manzari

Regions preferred by the CAA and excluded by EWPO and PV experiments (for couplings fixed to unity on the left). Claudio Andrea Manzari EPS-HEP 2021 13 / 23

SMEFT 00000 Simplified models

Conclusions 00 Backup 00

Vector-like Leptons

There are 6 possible representations under $U(1)_Y \times SU(2)_L$ generating different patterns of $Q^3_{\phi\ell}$ and $Q^1_{\phi\ell}$. These operators modify W and Z boson couplings

 $\frac{\underline{\text{EW precision observables and}}_{\text{tests of LFU }(\pi, K, \tau \text{ decays})}_{\text{to be considered.}} \text{have}$

	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$
l	1	2	-1/2
e	1	1	-1
ϕ	1	2	1/2
N	1	1	0
Ε	1	1	-1
$\Delta_1 = (\Delta_1^0, \Delta_1^-)$	1	2	-1/2
$\Delta_3 = (\Delta_3^-, \Delta_3^{})$	1	2	-3/2
$\Sigma_0 = (\Sigma_0^+, \Sigma_0^0, \Sigma_0^-)$	1	3	0
$\Sigma_1 = (\Sigma_1^0, \Sigma_1^-, \Sigma_1^{})$	1	3	-1

Claudio Andrea Manzari

EPS-HEP 2021

SMEFT 00000 Simplified models

Conclusions 00 Backup 00

Vector-like Leptons

- each representation alone does not improve the fit w.r.t the SM
- there is a minimal model strongly improving the agreement with data made of a singlet N coupling with electrons and a triplet Σ₁ coupling with muons! (2008.01113)

Claudio Andrea Manzari

EPS-HEP 2021

Vector Boson Triplet

▶ $SU(2)_L$ triplet of heavy vector bosons with zero hypercharge: W', Z'

- ▶ the W' generates $Q_{\ell\ell}^{2112}$ at tree level and $Q_{\phi\ell}^{(3)}$, $Q_{\phi\ell}^{(1)}$ via W W' mixing
- ▶ The Z' allows for interesting connections with $b \rightarrow s\ell\ell$

Claudio Andrea Manzari

SMEFT 00000 Simplified models

Conclusions 00 Backup 00

Vector Boson Triplet

- ► several observables need to be included: CAA, EW data, LFU tests, LHC bounds, parity violation experiments, b → sll and B_s - B̄_s
- The global fit improves the agreement with b → sℓℓ data by ≈ 5σ compared to the SM, and solve the CAA. (2005.13542)

Claudio Andrea Manzari

SMEFT 00000 Simplified models

Conclusions 00 Backup 00

The Singly Charged Scalar Singlet

- $SU(2)_L \times SU(3)_C$ singlet with hypercharge +1
- can only couple off-diagonally to leptons \implies generates $Q_{\ell\ell}^{2112}$

 $\mathbf{EW} \ \mathbf{Fit} + \mathbf{CAA}$

Claudio Andrea Manzari

EPS-HEP 2021

SMEFT 00000 Simplified models 00000000● Conclusions 00 Backup 00

The Singly Charged Scalar Singlet

Claudio Andrea Manzari

EPS-HEP 2021

Conclusions

• The Cabibbo Angle Anomaly is a deviation from unitarity observed in the 1^{st} row and column of the CKM matrix at the 3σ level

If this tension is due to NP, there are only 4 SMEFT operators at the dim-6 level which can explain it

EPS-HEP 2021

Claudio Andrea Manzari

SMEFT 00000 Simplified models

Conclusions

Backup 00

 The NP simplified models able to appropriately generate these operators are: VLQs, VLLs, a Z', a Vector Boson Triplet and a Singly Charged Scalar Singlet
Interesting model-dependent correlations with other anomalies arise!

EPS-HEP 2021

τ→μνν ≈2σ CAA a_μ 4.2σ ≈3σ LFUV b→cτv b→sµµ >3σ >7σ pp→e<u>+e</u> >3σ

► It is worth to look at the CAA as a hint of LFUV!

Claudio Andrea Manzari

SMEFT 00000 Simplified models

Conclusions 00 Backup ●0

Backup

Claudio Andrea Manzari

EPS-HEP 2021

Introduction	SMEFT	Simplified models	Conclusions	Backup
000	00000	000000000	00	0•

Future Prospects

- ▶ Improvements in the determination of CKM unitarity:
 - a. advances in nuclear-structure and EW radiative corrections treatment
 - b. experimental developments in the determination from neutron decay, $K_{\ell 3}$ and complementary constraint on $|V_{ud}|/|V_{us}|$ via pion β decay
 - c. improved measurements of $|V_{cd}|$ from D decays to bring the precision of the first column CKM unitarity competitive
- ▶ Improvement in a second G_F determination from the EW fit: Belle-II, FCC-ee, ILC, CEPC, or CLIC (m_t and m_W)

Claudio Andrea Manzari