Probing B-Anomalies via Dimuon Tails at the FCC-hh

B. Garland¹

in collabertation with: S. Jäger¹ C. K. Khosa² S. Kvedaraitė³

¹Department of Physics and Astronomy, University of Sussex

 $^2 \mathrm{Dipartimento}$ di Fisica, Università di Genova and INFN

 $^3{\rm Department}$ of Physics, University of Cincinnati

European Physical Society Conference on High Energy Physics $30^{\rm th}$ July 2021

B-Anomalies

Anomalies in semi-leptonic FCNC B-decays $b \to sl^+l^-$:

▶ Lepton flavour universality (LFU) ratios R_K and R_{K^*}

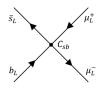
$$R_{K^{(*)}} = \frac{\mathrm{BR}(B \to K^{(*)} \bar{\mu} \mu)}{\mathrm{BR}(B \to K^{(*)} \bar{e} e)}$$

- ▶ Purely leptonic decays: $BR(B_S \to \bar{\mu}\mu)$.
- ► Angular observables of $B \to K\bar{\mu}\mu$.

Observable	Expt.	SM	
$R_K [1.1, 6] \text{ GeV}^2$	0.846 ± 0.044	$1.000^{+0.0008}_{-0.0007}$	
R_K^* [0.045, 1.1] GeV ²	0.66 ± 0.12	$0.920^{+0.0007}_{-0.0006}$	
R_K^* [1.1, 6] GeV ²	0.685 ± 0.12	$0.9960^{+0.0002}_{-0.0002}$	
$BR(B_s \to \mu^+\mu^-)$	$(3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$	$(2.63 \pm 0.13) \times 10^{-9}$	

Theoretically Clean Fit

▶ The anomalies in $b \to s l^+ l^-$ are well explained by a **4-fermion contact** interaction:



$$\frac{1}{\Lambda^2} (\bar{s}_L \gamma^{\nu} b_L) (\bar{\mu}_L \gamma_{\nu} \mu_L).$$

Coeff.	best fit	$\chi^2_{\rm min}$	<i>p</i> -value	SM exclusion $[\sigma]$	1σ range
δC_9^μ	-0.82	14.70 [6 dof]	0.02	4.08	[-1.06, -0.60]
δC_{10}^{μ}	0.65	6.52 [6 dof]	0.37	4.98	[0.52, 0.80]
δC_L^μ	-0.40	7.36 [6 dof]	0.29	4.89	[-0.48, -0.31]
$(\delta C_9^\mu, \delta C_{10}^\mu)$	(-0.11, 0.59)	6.38 [5 dof]	0.27	4.62	$\delta C_9^{\mu} \in [-0.41, \ 0.17]$

▶ Best fit value [Geng et al. 21]

$$\Lambda = 40.3^{+5.5}_{-3.5}$$
 TeV.

Standard Model Effective Field Theory (SMEFT)

• We can view the $bs\mu\mu$ contact interaction within the context of **SMEFT**:

$$\mathcal{L}^{\text{SMEFT}} = \mathcal{L}^{SM} + \sum_{n} c_n^{(6)} \mathcal{O}_n^{(6)} + \sum_{m} c_m^{(8)} \mathcal{O}_m^{(8)} + \cdots$$

▶ **Dim-6** operators relevant for $(\bar{L}L)(\bar{L}L)$ $bs\mu\mu$:

$$\mathcal{L}^{\text{SMEFT}} \supset C_{Q_{ij}L_{22}}^{(3)}(\bar{Q}_{i}\gamma_{\rho}\sigma^{a}Q_{j})(\bar{L}_{2}\gamma^{\rho}\sigma_{a}L_{2}) + C_{Q_{ij}L_{22}}^{(1)}(\bar{Q}_{i}\gamma_{\rho}Q_{j})(\bar{L}_{2}\gamma^{\rho}L_{2}).$$

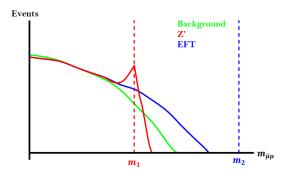
Change of coefficient basis:

$$\mathcal{L}^{\text{SMEFT}} \supset \boxed{C_{ij}^{+}(\bar{d}_{L}^{i}\gamma_{\rho}d_{L}^{j})(\bar{\mu}_{L}\gamma^{\rho}\mu_{L})} + V_{ik}C_{kl}^{+}V_{jl}^{*}(\bar{u}_{L}^{i}\gamma_{\rho}u_{L}^{j})(\bar{\nu}_{\mu}\gamma^{\rho}\nu_{\mu})}$$
$$C_{ij}^{-}(\bar{d}_{L}^{i}\gamma_{\rho}d_{L}^{j})(\bar{\nu}_{\mu}\gamma^{\rho}\nu_{\mu}) + V_{ik}C_{kl}^{-}V_{jl}^{*}(\bar{u}_{L}^{i}\gamma_{\rho}u_{L}^{j})(\bar{\mu}_{L}\gamma^{\rho}\mu_{L})}$$

▶ A non-zero C_{sb}^+ only generates a contact interaction involving muons with b and s quarks.

Probing Contact Interactions at a pp-Collider

- ▶ The EFT offers a **model-independent** framework to probe the B-anomalies.
- ▶ Investigate the **tails** of dimuon invariant mass distributions.
- \triangleright Simplified models include (Z' and Leptoquark) [Allanch et al. 18, 19, 20]



- ▶ CI Studies at the LHC: Phenomenological [Greljo, Marzocca 17, Afik et al. 18] & experimental [CERN-EP-2021-065] studies can exclude $\Lambda \sim 2-8$ TeV at 95% C.L.
- ▶ What can we do with higher a c.o.m energy? Use proposed **FCC-hh** as a baseline.

Analysis Set-Up

Analysis

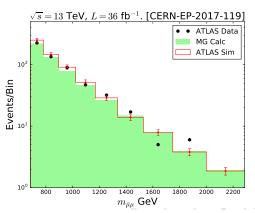
- ▶ Inclusive dimuon final state.
- ▶ Dominant SM background is **Drell-Yan**.
- Calculated cross-section at NLO-QCD+EW for both the EFT signal and SM background processes using MadGraph5_aMC@NLO v3.
- ▶ NLO Signal: UFO model with SM + EFT operators (R_2 terms needed!)

Cuts on muons:

$$p_T > \frac{\sqrt{s}}{250} \quad |\eta| < 2.5$$

$$m_{\bar{u}u}^{\min} > \frac{\sqrt{s}}{20}.$$

- ▶ PDF: NNPDF31_luxqed
- ▶ 5 Flavour Scheme.



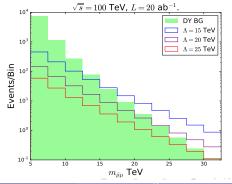
Statistics & Significance Calculation

- ▶ We perform two **statistical tests**:
 - Exclusion Limits: Test the BG+Signal Hypothesis against BG only.
 - Discovery: Test the BG only Hypothesis against BG+EFT Signal.
- To calculate the significance, we follow the methods detailed in [Cowan et al. 10] and construct a **profile likelihood ratio** from a binned histogram.

- **Binning Scheme:** We consider interval $\left[m_{\bar{\mu}\mu}^{\min}, m_{\bar{\mu}\mu}^{\max}\right]$ with bin size $\Delta m_{\bar{\mu}\mu}$.
- ▶ For collider c.o.m energy \sqrt{s} :

$$m_{\bar{\mu}\mu}^{\min} = \frac{\sqrt{s}}{20}$$
 $\Delta m_{\bar{\mu}\mu} = \frac{\sqrt{s}}{40}$.

▶ What abut $m_{\bar{\mu}\mu}^{\text{max}}$?



$m_{\bar{\mu}\mu}^{\rm max}$ & the Validity of the EFT

- ▶ The value of $m_{\bar{\mu}\mu}^{\text{max}}$ cannot be taken to be arbitrarily large!
- Most universal & conservative constraint: Tree-level unitarity requires [Di Luzio, Nardecchia 17]

$$m_{\bar{\mu}\mu} < \sqrt{\frac{4\pi}{\sqrt{3}}}\Lambda.$$

- ▶ **Simplified models:** unitary bound is reached sooner.
- ightharpoonup Example: simplified Z' model:

$$m_{\bar{\mu}\mu} < m_{Z'} < \sqrt{\frac{2\pi}{\sqrt{3}}}\Lambda.$$

- As $m_{\bar{\mu}\mu} \to m_{Z'}$ operators \mathcal{O} in the SMEFT with dim $\mathcal{O} > 6$ become relevant.
- We give all limits as function of $m_{\bar{\mu}\mu}^{\text{max}}$.

Results

Bounds at the LHC: $\sqrt{s} = 13 \text{ TeV}$

► Collider recast [CERN-EP-2017-119]: 95% C.L. exclusion for C_{sb} [Greljo, Marzocca 17]:

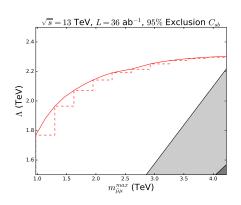
$$\Lambda < 2.6~{\rm TeV}~(36~{\rm fb}^{-1})~\&~\Lambda < 4.1^*~{\rm TeV}~(3000~{\rm fb}^{-1}).$$

▶ NLO-QCD+EW results:

$$\Lambda < 2.3 \ {\rm TeV} \ (36 \ {\rm fb}^{-1})$$

$$\Lambda < 4.2^* \text{ TeV } (3000 \text{ fb}^{-1})$$

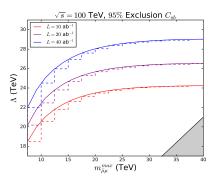
▶ NLO gives a **reduction** ~ 10% in the cross section of some bins. Large negative double Sudakov logarithms.

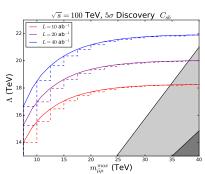


^{*}We calculate 95% C.L. exclusion at LO to be $\Lambda < 4.7 \text{ TeV} (3000 \text{ fb}^{-1})$

Bounds & Discovery at the FCC-hh: $\sqrt{s} = 100 \text{ TeV}$

FFC-hh: $\sqrt{s} = 100 \text{ TeV}$ and lifetime integrate lumi of $\sim 20 \text{ ab}^{-1}$ [FCC CDR V3].





Illustrative numbers:

	$\Lambda \text{ (TeV)}$			
$L ext{ (ab}^{-1})$	95% CL	3σ	5σ	
10	24.1	20.8	18.1	
40	28.9	24.9	21.8	

Beyond the FCC-hh (95% Exclusion)

What if we can increase the luminosity L at $\sqrt{s} = 100$ TeV?

▶ 95% Exclusion of $\Lambda' \sim 40$ TeV one needs: $L' \sim 500 \text{ ab}^{-1}$.

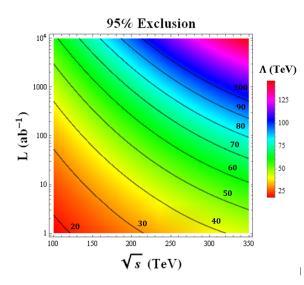
What if we can increase the **c.o.m** energy $\sqrt{s} L = 10$ and L = 40 ab⁻¹?

▶ 95% Exclusion of $\Lambda' \sim 40$ TeV one needs: $\sqrt{s} \sim 220$ TeV with

$$L = 10 \text{ ab}^{-1},$$

$$\sqrt{s} \sim 150 \text{ TeV with}$$

 $L = 40 \text{ ab}^{-1}$.



Summary & Conclusions

- ▶ Motivated by B-Anomalies, we have presented the prospects for a contact interaction search at $\sqrt{s} = 13$ TeV, 100 TeV and beyond.
- We improved on current LHC limits by including NLO corrections and addressing EFT validity.
- \blacktriangleright We provide 95% exclusion limits of our EFT signal along with 3, 5 σ rejection of SM background at the FCC-hh.
- ▶ At a $\sqrt{s} = 100$ TeV, we can exclude values of Λ close to those that give a good fit for the B-Anomalies.
- \blacktriangleright Scales of $\Lambda > 40$ TeV can be probed with a higher c.o.m energy and luminosity.

Thank you for your attention!

Back-up Slides

 ${\bf Back\text{-}up\ Slides}$

Back-up: EFT Validity - An Example

- ightharpoonup Simplified Z' model with mass $m_{Z'}$.
- ▶ Weakest constraint comes from perturbative-unitarity TeV $m_{z'} < \sqrt{\frac{2\pi}{\sqrt{3}}}\Lambda$. [Di Luzio, Nardecchia 17].
- ► Tree-level amplitude:

$$=\frac{ig}{\rho^2-m_{Z'}^2}\bar{b}(\rho_1)\gamma^{\mu}s(\rho_2)\bar{\mu}(\rho_3)\gamma_{\mu}\mu(\rho_4)$$

where $g = g_{bs}g_{\mu\mu}$.

 \triangleright Expanding in powers of p^2

$$\frac{ig}{p^2 - m_Z^2} = -\frac{ig}{m_{Z'}^2} - \frac{igp^2}{m_{Z'}^4} - \frac{igp^4}{m_{Z'}^6} + \mathcal{O}\left(\frac{p^6}{m_{Z'}^8}\right).$$

▶ Matching to EFT expansion, i.e. $g/m_{Z'}^2 = 1/\Lambda^2$,

$$p < \sqrt{g}\Lambda$$
.

Back-up: Statistics

- ightharpoonup Let N be the number of bins.
- \triangleright Expected discovery significance $E[Z_0]$ is given by

$$E[Z_0] = \sqrt{-2\left[\sum_{j=1}^{N} \left(s_j + (b_j + s_j) \ln \left(\frac{b_j}{b_j + s_j}\right)\right)\right]}.$$

An expected discovery at the $n\sigma$ level corresponds to $E[Z_e] = n$.

ightharpoonup Expected signal exclusion significance $E[Z_e]$ is given by

$$E[Z_e] = \sqrt{2\left[\sum_{j=1}^{N} \left(s_j + b_j \ln\left(\frac{b_j}{b_j + s_j}\right)\right)\right]}.$$

An expected exclusion at 95% CL corresponds to $E[Z_e] = 1.64$.