

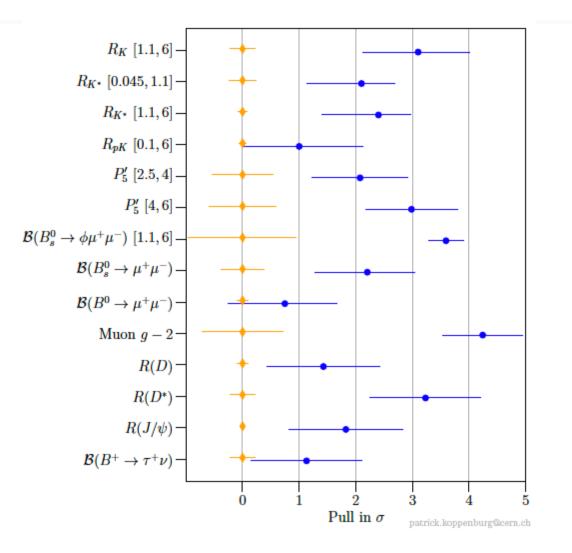
Probing New Physics with Heavy Hadron decays

Fulvia De Fazio INFN Bari

EPS 2021 July 26-30 Hamburg

 $\begin{array}{c} \mbox{based on:} \\ \mbox{Inclusive semileptonic } \Lambda_{\rm b} \mbox{ decays in the Standard Model and beyond} \\ \mbox{P. Colangelo, F. Loparco, FDF} \\ \mbox{JHEP 11 (2020) 032 , arXiv:2006.13759} \end{array}$

New & Old Anomalies



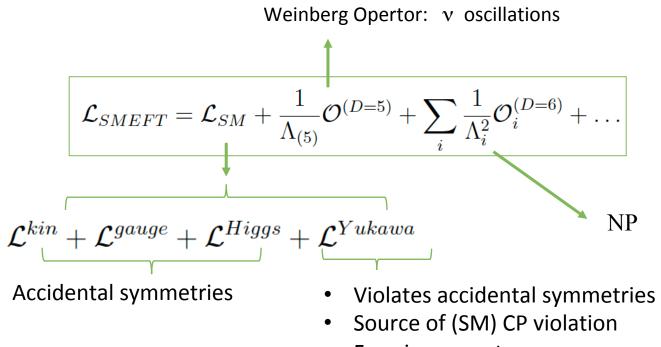
1) SM allowed processes: deviations from expectations \rightarrow NP

2) SM forbidden processes: observation \rightarrow NP

- many hints of LFU violation → relation between 1) and 2) expected
- Common origin of the anomalies?
 ex: Problems with V_{cb} and V_{ub} determinations might be correlated with observed anomalies in tree level modes
 P. Colangelo, FDF

PRD 95 (17) 011701

- tree level decays ($R(D^{(*)})$ & co.)
- loop (rare) decays ($R(K^{(*)}), P'_5, ...$)
- puzzling quantities (V_{cb}, V_{ub}, ϵ'/ϵ , (g-2)_µ...).
- o LFV decays $\tau \rightarrow 3\mu, \mu \rightarrow e \gamma \dots$



• Fermion mass terms

Exclusive b \rightarrow c,u modes

- Identifications of suitable observables
- Issue of FF uncertainties
- b \rightarrow c unsolved debate: role of the parametrization: BGL vs CLN in heavy-to-heavy FF Proposed to reconcile inclusive vs exclusive V_{cb} determinations

🦻 what about V_{ub}?

Inclusive b \rightarrow c,u modes (exploit HQE)

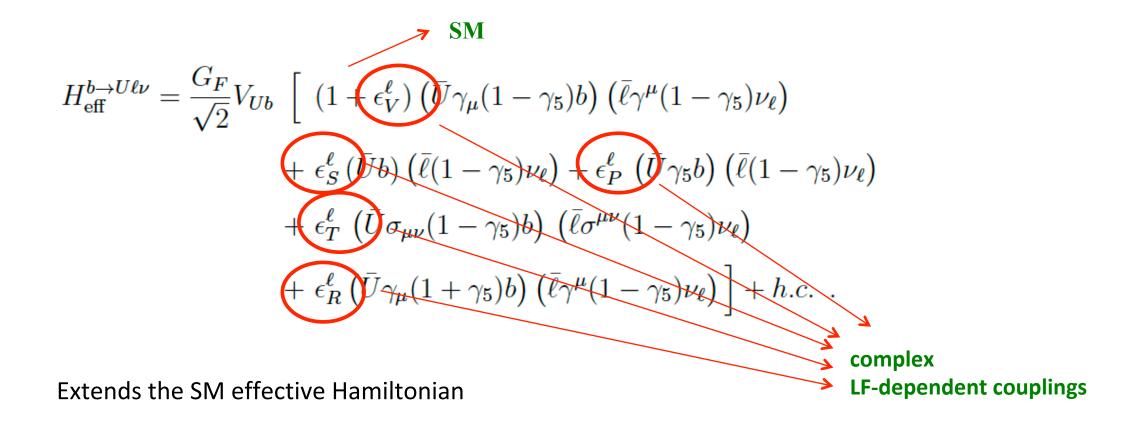
- Identifications of suitable observables
- Higher orders in 1/m $_{\text{Q}}$ and α_{s}
- role of shape function

Common starting point (U=c,u)

$$\begin{split} H^{b\to U\ell\nu}_{\text{eff}} &= \frac{G_F}{\sqrt{2}} V_{Ub} \left[\left(1 + \epsilon_V^\ell \right) \left(\bar{U} \gamma_\mu (1 - \gamma_5) b \right) \left(\bar{\ell} \gamma^\mu (1 - \gamma_5) \nu_\ell \right) \right. \\ &+ \epsilon_S^\ell \left(\bar{U} b \right) \left(\bar{\ell} (1 - \gamma_5) \nu_\ell \right) + \epsilon_P^\ell \left(\bar{U} \gamma_5 b \right) \left(\bar{\ell} (1 - \gamma_5) \nu_\ell \right) \\ &+ \epsilon_T^\ell \left(\bar{U} \sigma_{\mu\nu} (1 - \gamma_5) b \right) \left(\bar{\ell} \sigma^{\mu\nu} (1 - \gamma_5) \nu_\ell \right) \\ &+ \epsilon_R^\ell \left(\bar{U} \gamma_\mu (1 + \gamma_5) b \right) \left(\bar{\ell} \gamma^\mu (1 - \gamma_5) \nu_\ell \right) \right] + h.c. \; . \end{split}$$

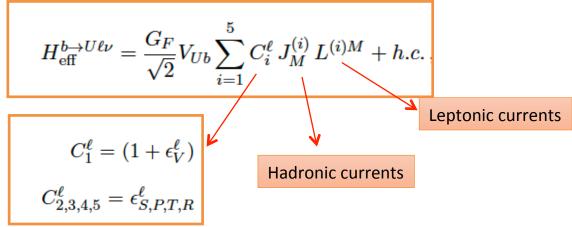
Extends the SM effective Hamiltonian

Common starting point (U=c,u)



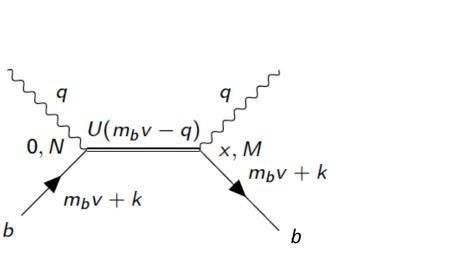
- Investigate correlations to similar processes in meson (B_s, B_c) decays and in b-baryon ($\Lambda_{b_r} \Xi_{b_r} \Omega_b$) decays
- inclusive widths : use Optical theorem
 Heavy Quark expansion (HQE)

Pioneering works: J. Chay, H. Georgi and B. Grinstein, PLB 247 (1990) 399 I.I.Y. Bigi, M.A. Shifman, N.G. Uraltsev and A.I. Vainshtein, PRL 71 (1993) 496



SM:
$$\epsilon_{V,S,P,T,R}^{\ell} = 0$$

 $J_{\mu}^{(1)} = \overline{U}\gamma_{\mu}(1-\gamma_5)b$
 $L^{\mu(1)} = \overline{\ell}\gamma_{\mu}(1-\gamma_5)\nu_{\ell}$



$$d\Gamma = d\Sigma \frac{G_F^2 |V_{Ub}|^2}{4m_H} \sum_{i,j} C_i^* C_j (W^{ij})_{MN} (L^{ij})^{MN}$$

$$(W^{ij})_{MN} = \frac{1}{\pi} \text{Im}(T^{ij})_{MN}$$

$$(T^{ij})_{MN} = i \int d^4x \, e^{i \, (m_b v - q) \cdot x} \langle H_b(v, s) | T[\hat{J}_M^{(i)\dagger}(x) \, \hat{J}_N^{(j)}(0)] | H_b(v, s) \rangle$$

$$= \langle H_b(v, s) | \bar{b}_v(0) \Gamma_M^{(i)\dagger} S_U(p_X) \Gamma_N^{(j)} b_v(0) | H_b(v, s) \rangle$$
Intermediate U quark propagator

Expansion:

$$S_U(p_X) = S_U^{(0)} - S_U^{(0)}(i \not D) S_U^{(0)} + S_U^{(0)}(i \not D) S_U^{(0)}(i \not D) S_U^{(0)} + \dots$$

$$\frac{1}{m_b v / -q / -m_U}$$

$$\begin{split} \frac{1}{\pi} \mathrm{Im}(T^{ij})_{MN} &= \frac{1}{\pi} \mathrm{Im} \frac{1}{\Delta_0} \langle H_b(v,s) | \bar{b}_v[\Gamma_M^{(i)\dagger} \mathcal{P} \Gamma_N^{(j)}] b_v | H_b(v,s) \rangle \\ &- \frac{1}{\pi} \mathrm{Im} \frac{1}{\Delta_0^2} \langle H_b(v,s) | \bar{b}_v[\Gamma_M^{(i)\dagger} \mathcal{P} \gamma^{\mu_1} \mathcal{P} \Gamma_N^{(j)}] (iD_{\mu_1}) b_v | H_b(v,s) \rangle \\ &+ \frac{1}{\pi} \mathrm{Im} \frac{1}{\Delta_0^3} \langle H_b(v,s) | \bar{b}_v[\Gamma_M^{(i)\dagger} \mathcal{P} \gamma^{\mu_1} \mathcal{P} \gamma^{\mu_2} \mathcal{P} \Gamma_N^{(j)}] (iD_{\mu_1}) (iD_{\mu_2}) b_v | H_b(v,s) \rangle \\ &- \frac{1}{\pi} \mathrm{Im} \frac{1}{\Delta_0^4} \langle H_b(v,s) | \bar{b}_v[\Gamma_M^{(i)\dagger} \mathcal{P} \gamma^{\mu_1} \mathcal{P} \gamma^{\mu_2} \mathcal{P} \Gamma_N^{(j)}] (iD_{\mu_1}) (iD_{\mu_2}) (iD_{\mu_3}) b_v | H_b(v,s) \rangle \,. \end{split}$$

 $\Delta_0 = p_U^2 - m_U^2$ $p_U = m_b v - q$ HQE

Requires hadronic matrix elements with increasing number of derivatives:

$$\mathcal{M}_{\mu_1\dots\mu_n} = \langle H_b(v,s) | (\bar{b}_v)_a(iD_{\mu_1})\dots(iD_{\mu_n})(b_v)_b | H_b(v,s) \rangle$$

can be expressed in terms of non perturbative parameters

.

$$\mathcal{O}\left(\frac{1}{m_b^n}\right)\cdots \begin{cases} \mathcal{O}\left(\frac{1}{m_b^3}\right) \begin{cases} \mathcal{O}\left(\frac{1}{m_b^2}\right) \begin{cases} -2M_H \hat{\mu}_{\pi}^2 = \langle H_b | \overline{b}_v \ iD^{\mu} \ iD_{\mu} \ b_v | H_b \rangle \\ 2M_H \hat{\mu}_G^2 = \langle H_b | \overline{b}_v \ (-i\sigma_{\mu\nu}) \ iD^{\mu} \ iD^{\nu} \ b_v | H_b \rangle \\ 2M_H \hat{\rho}_D^3 = \langle H_b | \overline{b}_v \ iD^{\mu} \ (iv \cdot D) \ iD_{\mu} \ b_v | H_b \rangle \\ 2M_H \hat{\rho}_{LS}^3 = \langle H_b | \overline{b}_v \ (-i\sigma_{\mu\nu}) \ iD^{\mu} \ (iv \cdot D) \ iD^{\nu} \ b_v | H_b \rangle \\ \dots \end{cases}$$

.

$$\mathcal{O}\left(\frac{1}{m_{b}^{n}}\right)\cdots\begin{cases} \mathcal{O}\left(\frac{1}{m_{b}^{3}}\right) \begin{cases} \mathcal{O}\left(\frac{1}{m_{b}^{2}}\right) \begin{cases} -2N_{H}\hat{\mu}_{\pi}^{2} \neq \langle H_{b}|\overline{b}_{v} \ iD^{\mu} \ iD_{\mu} \ b_{v}|H_{b}\rangle \\ 2M_{H}\hat{\mu}_{G}^{2} \neq \langle H_{b}|\overline{b}_{v} \ (-i\sigma_{\mu\nu}) \ iD^{\mu} \ iD^{\nu} \ b_{v}|H_{b}\rangle \\ 2M_{H}\hat{\rho}_{D}^{3} = \langle H_{b}|\overline{b}_{v} \ iD^{\mu} \ (iv \cdot D) \ iD_{\mu} \ b_{v}|H_{b}\rangle \\ 2M_{H}\hat{\rho}_{LS}^{3} = \langle H_{b}|\overline{b}_{v} \ (-i\sigma_{\mu\nu}) \ iD^{\mu} \ (iv \cdot D) \ iD^{\nu} \ b_{v}|H_{b}\rangle \\ \cdots$$

$\hat{\mu}_{\pi}^2$ matrix element of the kinetic energy operator

is different for different hadrons (i.e. B and $\Lambda_{\rm b})$

$$\mu_{\pi}^2(B) - \mu_{\pi}^2(\Lambda_b) = \frac{2m_b m_c}{m_b - m_c} \left[(m_{\Lambda_b} - m_{\Lambda_c}) - (\overline{m}_B - \overline{m}_D) \right] \left(1 + \mathcal{O}(1/m_{b,c}^2) \right)$$

$$\hat{\mu}_{\pi}^2(\Lambda_b) = (0.50 \pm 0.1) \,\mathrm{GeV}^2$$

.

$$\mathcal{O}\left(\frac{1}{m_b^n}\right)\cdots \begin{cases} \mathcal{O}\left(\frac{1}{m_b^3}\right) \\ \mathcal{O}\left(\frac{1}{m_b^3}\right)$$

 $\hat{\mu}_G^2$ matrix element of the chromomagnetic operator

depends on the spin of the hadron and can be fixed from data (mass splittings)

$$\hat{\mu}_G^2(\Lambda_b) = 0$$

.

$$\mathcal{O}\left(\frac{1}{m_{b}^{n}}\right) \dots \begin{cases} \mathcal{O}\left(\frac{1}{m_{b}^{2}}\right) \begin{cases} \mathcal{O}\left(\frac{1}{m_{c}^{2}}\right) \begin{cases} -2M_{H}\,\hat{\mu}_{\pi}^{2} = \langle H_{b}|\overline{b}_{v}\,iD^{\mu}\,iD_{\mu}\,b_{v}|H_{b}\rangle \\ 2M_{H}\,\hat{\mu}_{G}^{2} = \langle H_{b}|\overline{b}_{v}\,(-i\sigma_{\mu\nu})\,iD^{\mu}\,iD^{\nu}\,b_{v}|H_{b}\rangle \\ 2M_{H}\,\hat{\rho}_{D}^{3} = \langle H_{b}|\overline{b}_{v}\,iD^{\mu}\,(iv\cdot D)\,iD_{\mu}\,b_{v}|H_{b}\rangle \\ 2M_{h}\,\hat{\rho}_{LS}^{3} \neq \langle H_{b}|\overline{b}_{v}\,(-i\sigma_{\mu\nu})\,iD^{\mu}\,(iv\cdot D)\,iD^{\nu}\,b_{v}|H_{b}\rangle \\ \dots \end{cases}$$

$$\hat{\rho}_D^3 \quad \text{Darwin term approx:} \quad \rho_D^3(\Lambda_b) \simeq \rho_D^3(B) \qquad \qquad \rho_D^3(\Lambda_b) = (0.17 \pm 0.08) \,\text{GeV}^3$$

$$\hat{\rho}_{LS}^3 \quad \text{spin-orbit term} \qquad \qquad \hat{\rho}_{LS}^3(\Lambda_b) = 0$$

Results

 $\mathcal{M}_{\mu_1\dots\mu_n} = \langle H_b(v,s) | (\bar{b}_v)_a(iD_{\mu_1})\dots(iD_{\mu_n})(b_v)_b | H_b(v,s) \rangle$

General parametrization including **dependence on the spin** up to O(m_b⁻³) not known before Method derived for B mesons in B.M. Dassinger, T. Mannel and S. Turczyk, JHEP 03 (2007) 087

New terms depending on the spin appear for a **polarized baryon**

- Analytic results
- Main outcome of our study
- Applies to all spin ½ baryons

Results at $O(m_b^{-2})$: A.V. Manohar and M.B. Wise, PRD 49 (1994) 1310 S. Balk, J.G. Korner and D. Pirjol, EPJC 1 (1998) 221 Results

$$\mathcal{M}^{\rho\sigma\lambda} = M_{H} \left[\left(\frac{\hat{\rho}_{D}^{3}}{3} \Pi^{\rho\lambda} v^{\sigma} \mathsf{P}_{+} + \frac{\hat{\rho}_{LS}^{3}}{6} v^{\sigma} i \epsilon^{\rho\lambda\alpha\beta} v_{\alpha} \mathsf{S}_{\beta} \right) - \left(\frac{\hat{\rho}_{D}^{3}}{3} \Pi^{\rho\lambda} v^{\sigma} s^{\mu} \mathsf{S}_{\mu} - \frac{\hat{\rho}_{LS}^{3}}{2} v^{\sigma} i \epsilon^{\rho\lambda\alpha\beta} v_{\alpha} s_{\beta} \mathsf{P}_{+} \right) \right]$$

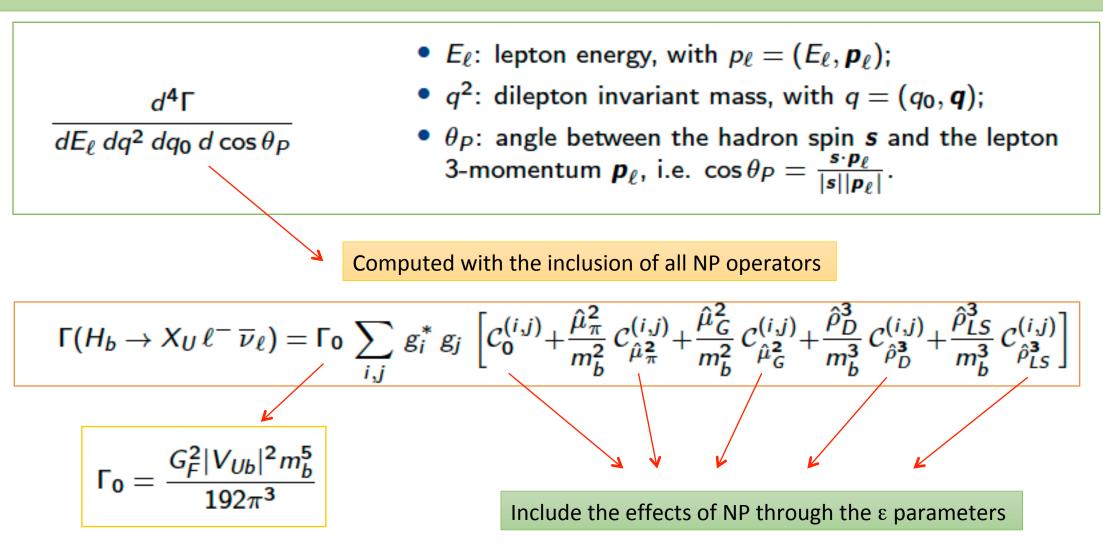
$$\begin{split} \mathcal{M}^{\rho\sigma} &= \mathcal{M}_{H} \left[\left(\frac{\hat{\mu}_{\pi}^{2}}{3} \prod^{\rho\sigma} \mathsf{P}_{+} + \frac{\hat{\mu}_{G}^{2}}{6} i \epsilon^{\rho\sigma\alpha\beta} \mathsf{v}_{\alpha} \mathsf{S}_{\beta} + \right. \\ &+ \frac{\hat{\rho}_{D}^{3} + \hat{\rho}_{LS}^{3}}{24m_{b}} \left(4 \left(i \epsilon^{\rho\sigma\alpha\beta} \mathsf{v}_{\alpha} \mathsf{S}_{\beta} - \mathsf{v}^{\rho} \mathsf{v}^{\sigma} \mathsf{y} \right) + \right. \\ &+ \mathsf{v}^{\rho} \left(2 \gamma^{\sigma} + \mathbf{y} \gamma^{\sigma} - \gamma^{\sigma} \mathsf{y} \right) + \mathsf{v}^{\sigma} \left(2 \gamma^{\rho} + \mathbf{y} \gamma^{\rho} - \gamma^{\rho} \mathsf{y} \right) \right) \right) + \\ &+ \left(- \frac{\hat{\mu}_{\pi}^{2}}{3} \prod^{\rho\sigma} \mathsf{P}_{+} \$ \gamma_{5} + \frac{\hat{\mu}_{G}^{2}}{2} i \epsilon^{\rho\sigma\alpha\beta} \mathsf{v}_{\alpha} \mathsf{s}_{\beta} \mathsf{P}_{+} + \right. \\ &+ \frac{\hat{\rho}_{D}^{3}}{12m_{b}} \left(6 i \epsilon^{\rho\sigma\alpha\beta} \mathsf{v}_{\alpha} \mathsf{s}_{\beta} + i \left(\mathsf{v}^{\rho} \epsilon^{\sigma\mu\alpha\beta} - \mathsf{v}^{\sigma} \epsilon^{\rho\mu\alpha\beta} \right) \mathsf{v}_{\alpha} \mathsf{s}_{\beta} \gamma_{\mu} + \right. \\ &+ \left. s^{\rho} \mathsf{v}^{\sigma} \mathsf{y} \gamma_{5} + \mathsf{v}^{\rho} \mathsf{s}^{\sigma} \left(2\gamma_{5} + \mathsf{y} \gamma_{5} \right) + \left(2 \mathsf{v}^{\rho} \mathsf{v}^{\sigma} + \mathsf{v}^{\rho} \gamma^{\sigma} - \mathsf{v}^{\sigma} \gamma^{\rho} \right) \$ \gamma_{5} \right) + \\ &+ \left. \left. \frac{\hat{\rho}_{LS}^{3}}{8m_{b}} \left(4 i \epsilon^{\rho\sigma\alpha\beta} \mathsf{v}_{\alpha} \mathsf{s}_{\beta} + i \left(\mathsf{v}^{\rho} \epsilon^{\sigma\mu\alpha\beta} - \mathsf{v}^{\sigma} \epsilon^{\rho\mu\alpha\beta} \right) \mathsf{v}_{\alpha} \mathsf{s}_{\beta} \gamma_{\mu} + \right. \\ &+ \left. \left. \left(s^{\rho} \mathsf{v}^{\sigma} + \mathsf{v}^{\rho} \mathsf{s}^{\sigma} \right) \gamma_{5} + \left(2 \mathsf{v}^{\rho} \mathsf{v}^{\sigma} - \mathsf{v}^{\sigma} \gamma^{\rho} \right) \$ \gamma_{5} \right) \right) \right] \end{split}$$

P. Colangelo, F. Loparco, FDF JHEP 11 (2020) 032

Results

$$\begin{split} \mathcal{M}^{\rho} &= M_{H} \left[\left(\frac{\hat{\mu}_{\pi}^{2} - \hat{\mu}_{G}^{2}}{12m_{b}} \left(v^{\rho} \left(3 + 5 \psi \right) - 2\gamma^{\rho} \right) - \frac{\hat{\rho}_{D}^{3} + \hat{\rho}_{LS}^{3}}{12m_{b}^{2}} \left(4 v^{\rho} \psi - \gamma^{\rho} \right) \right) + \\ &+ \left(- \frac{\hat{\mu}_{\pi}^{2}}{12m_{b}} \left(\left(v^{\rho} \left(3 + 5 \psi \right) - 2\gamma^{\rho} \right) \not s \gamma_{5} + 4s^{\rho} P_{+} \gamma_{5} \right) + \\ &+ \frac{\hat{\mu}_{G}^{2}}{4m_{b}} \left(\left(v^{\rho} \left(1 + 2\psi \right) - \gamma^{\rho} \right) \not s \gamma_{5} + s^{\rho} \gamma_{5} \right) + \\ &+ \frac{\hat{\rho}_{D}^{3}}{12m_{b}^{2}} \left(\left(v^{\rho} \left(1 + 4\psi \right) - 2\gamma^{\rho} \right) \not s \gamma_{5} + s^{\rho} \left(2 - \psi \right) \gamma_{5} \right) + \\ &+ \frac{\hat{\rho}_{LS}^{3}}{8m_{b}^{2}} \left(\left(3v^{\rho} \psi - \gamma^{\rho} \right) \not s \gamma_{5} + s^{\rho} \gamma_{5} \right) \right) \end{split}$$

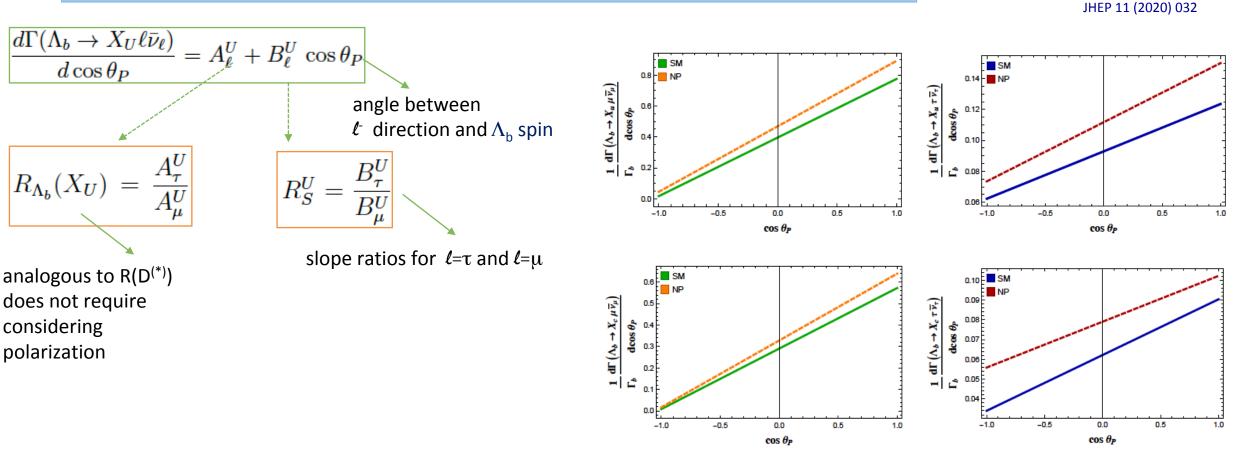
P. Colangelo, F. Loparco, FDF JHEP 11 (2020) 032 Fully differential decay width



Complete expression at $O(1/m_b^3)$ in SM, including all NP operators and for non vanishing lepton mass Rather lengthy P. Colangelo, F. Loparco, FDF JHEP 11 (2020) 032, arXiv:2006.13759

Numerical Results

Identification of observables sensitive to Λ_b polarization and to BSM effects (Longitudinal polarization expected for Λ_b resulting from b quark produced in top or Z⁰ decays)



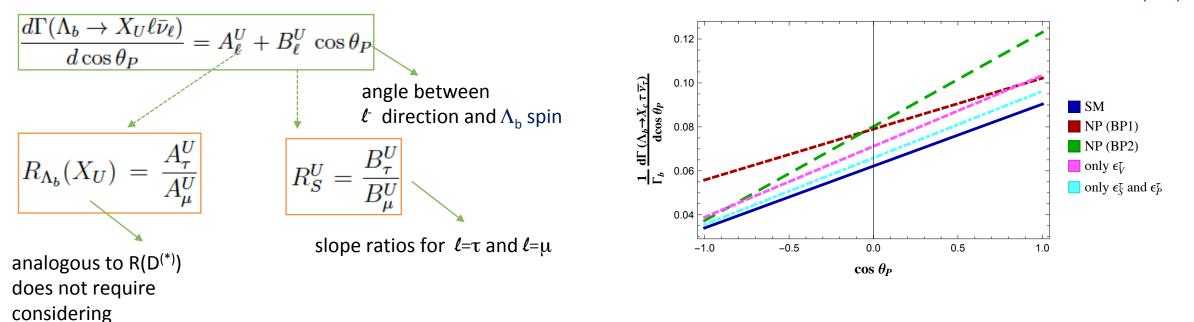
NP: benchmark points b ->u P. Colangelo, F. Loparco, FDF, PRD 100 (19) 075037

b ->c P. Colangelo, FDF, JHEP 06 (18) 082 (BP1) R.X. Shi, L.S. Geng, B. Grinstein, S. Jager, J.M. Camalich JHEP 12 (19) 065. (BP2) P. Colangelo, F. Loparco, FDF

Numerical Results

Identification of observables sensitive to Λ_b polarization and to BSM effects (Longitudinal polarization expected for Λ_b resulting from b quark produced in top or Z⁰ decays)

P. Colangelo, F. Loparco, FDF JHEP 11 (2020) 032



NP: benchmark points b ->u P. Colangelo, F. Loparco, FDF, PRD 100 (19) 075037

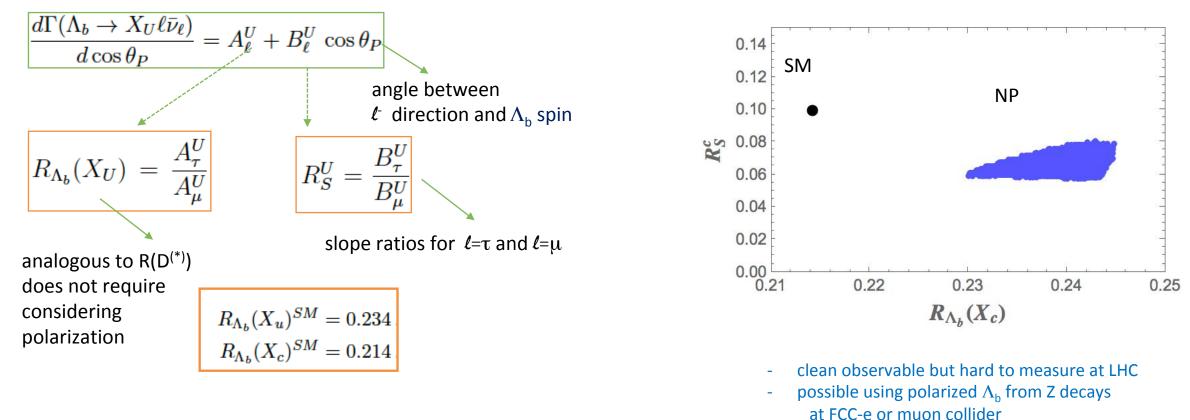
polarization

b ->c P. Colangelo, FDF, JHEP 06 (18) 082 (BP1) R.X. Shi, L.S. Geng, B. Grinstein, S. Jager, J.M. Camalich JHEP 12 (19) 065. (BP2)

Numerical Results

Identification of observables sensitive to Λ_b polarization and to BSM effects (Longitudinal polarization expected for Λ_b resulting from b quark produced in top or Z⁰ decays)

P. Colangelo, F. Loparco, FDF JHEP 11 (2020) 032



NP: benchmark points

b ->u P. Colangelo, F. Loparco, FDF, PRD 100 (19) 075037

b ->c P. Colangelo, FDF, JHEP 06 (18) 082 (BP1) R.X. Shi, L.S. Geng, B. Grinstein, S. Jager, J.M. Camalich JHEP 12 (19) 065. (BP2)

Conclusions

Inclusive heavy hadron decays

- Further testing ground for NP
- Essential to understand the inclusive/exclusive discrepancy in the V_{cb} and V_{ub} determinations

Theoretical improvement:

calculation of the necessary hadronic matrix elements in the case of a polarized baryon at $O(1/m_b^3)$ and including all possible NP operators

Results: distributions in cos (θ_{P}) sensitive to NP

- Ratio $\mathsf{R}(\Lambda_{\mathsf{b}})$ can deviate from SM
- Ratio of slope parameter to be considered together with $R(\Lambda_b)$
- correlation between the two ratio shows the predicted pattern of deviation from SM
- measurable at FCC