

Implications of LHCb Data for Lepton Flavour Universality Violation

Siavash Neshatpour

Lyon University, IP2I

In collaboration with T. Hurth, N. Mahmoudi, D. Martinez Santos

Based on: [arXiv:1904.08399, arXiv:2012.12207 and arXiv:2104.10058]

Anomalies in $b o s \ \mu^+ \mu^-$ decays

Several deviations ("anomalies") with respect to the SM predictions in $b \rightarrow s\ell\ell$ measurements

• Long standing anomaly in the $B \to K^* \mu^+ \mu^-$ angular observable $P'_5 / S_5 \left(= P'_5 \times \sqrt{F_L (1 - F_L)}\right)$

- 2013 LHCb (1 fb⁻¹)
- 2016 LHCb (3 fb⁻¹)

 $\square \approx 2.9\sigma$ local tension in P'_5 with the respect SM predictions

 \longrightarrow significance depends on estimation of hadronic contributions

Anomalies in $b o s \ \mu^+ \mu^-$ decays

Several deviations ("anomalies") with respect to the SM predictions in $b \rightarrow s\ell\ell$ measurements

o Branching fractions

 \Box Measurements below SM predictions with $\sim 2-3\sigma$ significance

Large theory uncertainties (several form factors involved)

Lepton flavour universality violation in $b \rightarrow s \ \ell^+ \ell^-$ decays

Lepton flavour universality violating ratios Ο

LHCb meas. below SM with $(2.3\sigma) \& 2.5\sigma$ for R_{K^*} and 3.1σ for $R_K \rightarrow \#$ cautiously excited

SM prediction very accurate with uncertainty less than (3%) 1%

 $\mathsf{BR}(B\to\mu^+\mu^-)$

Combination of LHCb, CMS and ATLAS measurement for BR($B_{s,d} \rightarrow \mu^+ \mu^-$)

 \Box The SM prediction is near 2σ contour

 \Box Theory uncertainties $\lesssim 5\%$

Sources of hadronic uncertainties in exclusive modes

Theoretical prediction

Sources of hadronic uncertainties in exclusive modes

1) Local contributions $\langle K^* \ell \ell | O_{7,9,10} | B \rangle$

 \rightarrow form factors $\tilde{V}_{\pm,0}, \tilde{T}_{\pm,0}, \tilde{S}$

$$H_V(\lambda) = -i N' \left\{ C_9 \,\tilde{V}_\lambda(q^2) + \frac{m_B^2}{q^2} \left[\frac{2 \,\hat{m}_b}{m_B} C_7^{\text{eff}} \,\tilde{T}_\lambda(q^2) \right] \right\}$$

Theoretical prediction

Sources of hadronic uncertainties in exclusive modes

- 1) Local contributions $\langle K^* \ell \ell | O_{7,9,10} | B \rangle$
 - \rightarrow form factors $\tilde{V}_{\pm,0}, \tilde{T}_{\pm,0}, \tilde{S}$

2) Non-local contributions

 \rightarrow calculated at LO in QCDf, but higher powers unknown ("guesstimated")

← recent progress by Bobeth et al. 1707.07305 and Gubernari et al. 2011.09813

$$H_V(\lambda) = -i N' \Big\{ C_9^{\text{eff}} \, \tilde{V}_{\lambda}(q^2) + \frac{m_B^2}{q^2} \Big[\frac{2 \, \hat{m}_b}{m_B} C_7^{\text{eff}} \, \tilde{T}_{\lambda}(q^2) - 16\pi^2 \, \mathcal{N}_{\lambda}(q^2) \Big] \Big\}$$

Theoretical prediction

Sources of hadronic uncertainties in exclusive modes

- 1) Local contributions $\langle K^* \ell \ell | O_{7,9,10} | B \rangle$
 - \rightarrow form factors $\tilde{V}_{\pm,0}, \tilde{T}_{\pm,0}, \tilde{S}$

"clean observables"

2) Non-local contributions

 \rightarrow calculated at LO in QCDf, but higher powers unknown ("guesstimated")

← recent progress by Bobeth et al. 1707.07305 and Gubernari et al. 2011.09813

$$H_V(\lambda) = -i N' \Big\{ C_9^{\text{eff}} \, \tilde{V}_{\lambda}(q^2) + \frac{m_B^2}{q^2} \Big[\frac{2 \, \hat{m}_b}{m_B} C_7^{\text{eff}} \, \tilde{T}_{\lambda}(q^2) - 16\pi^2 \, \mathcal{N}_{\lambda}(q^2) \Big] \Big\}$$

 \Box To distinguish hadronic effects from NP in $C_{7,9}$ good control over hadronic contributions needed

□ In the LFUV ratios hadronic uncertainties cancel out

□ For BR($B_s \rightarrow \mu^+ \mu^-$) only one hadronic parameter f_{B_s}

Global analysis of $b \rightarrow s\ell^+\ell^-$ observables

- $\blacksquare \quad R_K, R_{K^*}$
- BR($B_{s.d} \to \mu^+ \mu^-$)
- BR $(B_s \rightarrow e^+ e^-)$

Using SuperIso public program

- BR($B \rightarrow X_s \mu^+ \mu^-$)
- BR($B \rightarrow X_s e^+ e^-$)
 - BR $(B \rightarrow K^* e^+ e^-)$

• $B_s \to \phi \ \mu^+ \mu^-$: BR, ang. obs.

- $B^{0(+)} \to K^{0(+)} \mu^+ \mu^-$: BR, ang. obs.
- $B^{(+)} \to K^{*(+)} \mu^+ \mu^-$: BR, ang. obs.
- $\Lambda_b \to \Lambda \mu^+ \mu^-$: BR, ang. obs.

- $R_{K}, R_{K^{*}}$
- $BR(B_{s,d} \rightarrow \mu^+ \mu^-)$
- $BR(B_s \rightarrow e^+e^-)$

 δC_{9}

 δC_{q}^{e}

 δC^{μ}_{0}

 δC^{μ}_{LL}

 -0.41 ± 0.10

- BR($B \rightarrow X_s \mu^+ \mu^-$)
- BR($B \rightarrow X_s e^+ e^-$)
- BR($B \rightarrow K^* e^+ e^-$)
- Using SuperIso public program
 - All observables All observables **2019** data $(\chi^2_{\rm SM} = 117.03)$ **2021** data $(\chi^2_{\rm SM} = 225.8)$ $\chi^2_{\rm min}$ $\chi^2_{\rm min}$ Pull_{SM} b.f. value b.f. value Pull_{SM} -1.01 ± 0.20 99.2 4.2σ δC_{9} -0.99 ± 0.13 186.2 6.3σ 3.2σ δC_{q}^{e} 0.79 ± 0.20 207.7 0.78 ± 0.26 106.6 4.3σ δC^{μ}_{α} -0.93 ± 0.17 89.4 5.3σ -0.95 ± 0.12 168.6 7.6σ δC_{10} 0.25 ± 0.23 115.7 1.1σ δC_{10} 0.32 ± 0.18 222.3 1.9σ δC_{10}^e -0.73 ± 0.23 105.2 3.4σ δC_{10}^e -0.74 ± 0.18 206.3 4.4σ δC_{10}^{μ} δC_{10}^{μ} 0.53 ± 0.17 105.8 3.3σ 0.55 ± 0.13 205.2 4.5σ δC_{LL}^e δC_{LL}^e 0.40 ± 0.13 105.8 3.3σ 0.40 ± 0.10 206.9 4.3σ

 $(C_{LL} \equiv C_9 = -C_{10})$

• $B_s \rightarrow \phi \ \mu^+ \mu^-$: BR, ang. obs.

• $\Lambda_h \to \Lambda \mu^+ \mu^-$: BR, ang. obs.

 6.7σ

180.5

• $B^{0(+)} \to K^{0(+)} \mu^+ \mu^-$: BR, ang. obs.

• $B^{(+)} \to K^{*(+)} \mu^+ \mu^-$: BR, ang. obs.

Hierarchy of the preferred NP scenarios have remained the same as is in 2019; C_9^{μ} followed by C_{LL}^{μ}

 δC^{μ}_{LL}

 -0.49 ± 0.08

Significance increased by more than 2σ in the preferred scenarios

 4.5σ

96.6

NP significance depend on the assumptions on the non-factorisable power corrections

- $\blacksquare R_K, R_{K^*}$
- BR($B_{s.d} \rightarrow \mu^+ \mu^-$)
- BR $(B_s \rightarrow e^+ e^-)$

- BR($B \to X_s \mu^+ \mu^-$)
- BR($B \rightarrow X_s e^+ e^-$)
- BR $(B \rightarrow K^* e^+ e^-)$
- Using SuperIso public program

- $B_s \to \phi \ \mu^+ \mu^-$: BR, ang. obs.
- $B^{0(+)} \to K^{0(+)} \mu^+ \mu^-$: BR, ang. obs.
- $B^{(+)} \to K^{*(+)} \mu^+ \mu^-$: BR, ang. obs.
- $\Lambda_b \to \Lambda \mu^+ \mu^-$: BR, ang. obs.

Similar fits by other groups:

Geng et al. arXiv:2103.12738,Altmannshofer et al. arXiv: 2103.13370,Algueró et al. arXiv:2104.08921,Ciuchini et al. arXiv:2011.01212,Datta et al. 1903.10086,Kowalska et al., arXiv:1903.10932

Siavash Neshatpour

- $\blacksquare \quad R_K, R_{K^*}$
- BR($B_{s.d} \rightarrow \mu^+ \mu^-$)
- BR $(B_s \rightarrow e^+ e^-)$

- BR($B \to X_s \mu^+ \mu^-$)
- BR($B \rightarrow X_s e^+ e^-$)
- BR $(B \rightarrow K^* e^+ e^-)$
- Using SuperIso public program

- $B_s \to \phi \ \mu^+ \mu^-$: BR, ang. obs.
- $B^{0(+)} \to K^{0(+)} \mu^+ \mu^-$: BR, ang. obs.
- $B^{(+)} \to K^{*(+)} \mu^+ \mu^-$: BR, ang. obs.
- $\Lambda_b \to \Lambda \mu^+ \mu^-$: BR, ang. obs.

Similar fits by other groups:

Geng et al. arXiv:2103.12738,Altmannshofer et al. arXiv: 2103.13370,Algueró et al. arXiv:2104.08921,Ciuchini et al. arXiv:2011.01212,Datta et al. 1903.10086,Kowalska et al., arXiv:1903.10932

Siavash Neshatpour

Considering only one or two Wilson coefficients may not give the full picture!

All relevant Wilson coefficients:

 $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell}$ + primed coefficients \rightarrow 20 degrees of freedom

Considering the most general NP description, look-elsewhere effect is avoided

All observables with $\chi^2_{\rm SM} = 225.8$					
	$\chi^2_{\rm min} = 151.6;$	$Pull_{SM} = 5.5(5.)$	$6)\sigma$		
δ	C ₇		δC_8		
0.05 =	± 0.03	-0.70 ± 0.40			
δ	0%		$\delta C'_8$		
-0.01	± 0.02	0.0	0 ± 0.80		
δC_9^{μ}	δC_9^e	δC^{μ}_{10}	δC^e_{10}		
-1.16 ± 0.17	-6.70 ± 1.20	0.20 ± 0.21	degenerate w/ $C_{10}^{\prime e}$		
$\delta C_9^{\prime \mu}$	$\delta C_9^{\prime e}$	$\delta C_{10}^{\prime\mu}$	$\delta C_{10}^{\prime e}$		
0.09 ± 0.34	1.90 ± 1.50	-0.12 ± 0.20	degenerate w/ C^e_{10}		
$C^{\mu}_{Q_1}$	$C^e_{Q_1}$	$C^{\mu}_{Q_2}$	$C^e_{Q_2}$		
$\begin{array}{c} 0.04 \pm 0.10 \\ [-0.08 \pm 0.11] \end{array}$	-1.50 ± 1.50 $[-0.20 \pm 1.60]$	-0.09 ± 0.10 $[-0.11 \pm 0.10]$	-4.10 ± 1.5 [4.50 ± 1.5]		
$C_{Q_1}^{\prime\mu}$	$C_{Q_1}^{\prime e}$	$C_{Q_2}^{\prime\mu}$	$C_{Q_2}^{\prime e}$		
0.15 ± 0.10 $[0.02 \pm 0.12]$	-1.70 ± 1.20 $[-0.30 \pm 1.10]$	-0.14 ± 0.11 $[-0.16 \pm 0.10]$	-4.20 ± 1.2 [4.40 ± 1.2]		

Insensitive Wilson coefficients and flat directions eliminated via likelihood profiles and corr. matrices

 \hookrightarrow Effective dof = (19) giving 5.6 σ significance

Siavash Neshatpour

New Physics fit of Clean Observables

Fit to clean observables R_K , R_{K^*} , $B_S \rightarrow \mu^+ \mu^-$

Only $R_{K^{(*)}}, B_{s,d} \rightarrow \mu^+ \mu^-$				
:	2021 data $(\chi^2_{ m SN})$	$_{M} = 28.1$	9)	
	b.f. value	$\chi^2_{ m min}$	$\mathrm{Pull}_{\mathrm{SM}}$	
δC_9	-1.00 ± 6.00	28.1	0.2σ	
δC_9^e	0.80 ± 0.21	11.2	4.1σ	
δC_9^{μ}	-0.77 ± 0.21	11.9	4.0σ	
δC_{10}	0.43 ± 0.24	24.6	1.9σ	
δC_{10}^e	-0.78 ± 0.20	9.5	4.3σ	
δC_{10}^{μ}	0.64 ± 0.15	7.3	4.6σ	
δC_{LL}^e	0.41 ± 0.11	10.3	4.2σ	
$\delta C^{\mu}_{\mathrm{LL}}$	-0.38 ± 0.09	7.1	4.6σ	

Fit to clean observables $R_K, R_{K^*}, B_S \to \mu^+ \mu^-$ and to the rest of the $b \to s\ell\ell$ obs.

Only $R_{K^{(*)}}, B_{s,d} \rightarrow \mu^+ \mu^-$				
:	2021 data $(\chi^2_{ m SN})$	M = 28.1	19)	
	b.f. value	$\chi^2_{ m min}$	$\mathrm{Pull}_{\mathrm{SM}}$	
δC_9	-1.00 ± 6.00	28.1	0.2σ	
δC_9^e	0.80 ± 0.21	11.2	4.1σ	
δC_9^{μ}	-0.77 ± 0.21	11.9	4.0σ	
δC_{10}	0.43 ± 0.24	24.6	1.9σ	
δC_{10}^e	-0.78 ± 0.20	9.5	4.3σ	
δC_{10}^{μ}	0.64 ± 0.15	7.3	4.6σ	
$\delta C^e_{ m LL}$	0.41 ± 0.11	10.3	4.2σ	
$\delta C^{\mu}_{\mathrm{LL}}$	-0.38 ± 0.09	7.1	4.6σ	

All observables except $R_{K^{(*)}}, B_{s,d} \to \mu^+ \mu^-$				
	2021 data $(\chi^2_{ m S})$	$_{\rm M} = 200.$	1)	
	b.f. value	$\chi^2_{ m min}$	$\mathrm{Pull}_{\mathrm{SM}}$	
δC_9	-1.01 ± 0.13	158.2	6.5σ	
δC_9^e	0.70 ± 0.60	198.8	1.1σ	
δC_9^{μ}	-1.03 ± 0.13	156.0	6.6σ	
δC_{10}	0.34 ± 0.23	197.7	1.5σ	
δC_{10}^e	-0.50 ± 0.50	199.0	1.0σ	
δC_{10}^{μ}	0.41 ± 0.23	196.5	1.9σ	
$\delta C_{\mathrm{LL}}^{e}$	0.33 ± 0.29	198.9	1.1σ	
$\delta C^{\mu}_{\mathrm{LL}}$	-0.75 ± 0.13	167.9	5.7σ	

Depends on the assumptions on the non-factorisable power corrections

Fit to clean observables R_K , R_{K^*} , $B_s \to \mu^+ \mu^-$ and to the rest of the $b \to s\ell\ell$ obs.

	Only $R_{K^{(*)}}, B_{s,d}$	$\rightarrow \mu^+\mu^-$	-	All obs	ervables except R_{μ}	$\chi^{(*)}, B_{s,d}$	$\rightarrow \mu^+ \mu^-$
:	2021 data $(\chi^2_{ m SN})$	M = 28.1	19)		2021 data $(\chi^2_{ m S})$	$_{\rm M} = 200.$	1)
	b.f. value	$\chi^2_{ m min}$	$\operatorname{Pull}_{\mathrm{SM}}$		b.f. value	$\chi^2_{ m min}$	$\mathrm{Pull}_{\mathrm{SM}}$
δC_9	-1.00 ± 6.00	28.1	0.2σ	δC_9	-1.01 ± 0.13	158.2	6.5σ
δC_9^e	0.80 ± 0.21	11.2	4.1σ	δC_9^e	0.70 ± 0.60	198.8	1.1σ
δC_9^{μ}	-0.77 ± 0.21	11.9	4.0σ	δC_9^{μ}	-1.03 ± 0.13	156.0	6.6σ
δC_{10}	0.43 ± 0.24	24.6	1.9σ	δC_{10}	0.34 ± 0.23	197.7	1.5σ
δC^e_{10}	-0.78 ± 0.20	9.5	4.3σ	δC_{10}^e	-0.50 ± 0.50	199.0	1.0σ
δC^{μ}_{10}	0.64 ± 0.15	7.3	4.6σ	δC_{10}^{μ}	0.41 ± 0.23	196.5	1.9σ
δC^e_{LL}	0.41 ± 0.11	10.3	4.2σ	$\delta C_{\mathrm{LL}}^{e}$	0.33 ± 0.29	198.9	1.1σ
$\delta C^{\mu}_{\rm LL}$	-0.38 ± 0.09	7.1	4.6σ	$\delta C^{\mu}_{\mathrm{LL}}$	-0.75 ± 0.13	167.9	5.7σ

Depends on the assumptions on the non-factorisable power corrections

Compatible NP scenarios between the two sets

Two operator fit, role of $B_s o \mu^+ \mu^-$

Fit to clean observables R_K , R_{K^*} , $B_s \rightarrow \mu^+ \mu^-$

Coloured regions: 1σ range of fit to individual observables

Yellow diamond \diamondsuit : best fit point of $(C_9^{\mu}, C_{10}^{\mu})$ fit to $R_K + R_{K^*}$

Two operator fit, role of $B_s o \mu^+ \mu^-$

Fit to clean observables R_K , R_{K^*} , $B_s \rightarrow \mu^+ \mu^-$

Coloured regions: 1σ range of fit to individual observables

Yellow diamond \diamond : best fit point of $(C_9^{\mu}, C_{10}^{\mu})$ fit to $R_K + R_{K^*}$

Green cross +: best fit point of $(C_9^{\mu}, C_{10}^{\mu})$ fit to $R_K + R_{K^*} + B_s \rightarrow \mu^+ \mu^-$

Two operator fit, role of $B_s o \mu^+ \mu^-$

Fit to clean observables R_K , R_{K^*} , $B_s \rightarrow \mu^+ \mu^-$

Coloured regions: 1σ range of fit to individual observables

Yellow diamond \diamond : best fit point of $(C_9^{\mu}, C_{10}^{\mu})$ fit to R_K, R_{K^*}

Green cross +: best fit point of $(C_9^{\mu}, C_{10}^{\mu})$ fit to $R_K + R_{K^*} + B_s \rightarrow \mu^+ \mu^-$

Prospect of clean observables

We assume future experimental results are in agreement with one of the current NP scenarios from the fit to clean observables

We assume future experimental results are in agreement with one of the current NP scenarios from the fit to clean observables

assuming the best fit point of \mathcal{C}^{μ}_{q} 14 12 $R_{K}([1.1, 6.0])$ Upper limit: assuming ultimate systematic Pull _{SM} 10 uncert. envisaged for 50 & 300 fb⁻¹ (1% for ratios & 4% for $B_s \rightarrow \mu^+ \mu^-$) 8 Lower limit: assuming current systematic 6 $R_{K^*}([1.1, 6.0])$ uncertainties do not improve 4 2 45. 0 50 150 200 250 100 300 Luminosity [fb¹]

We assume future experimental results are in agreement with one of the current NP scenarios from the fit to clean observables

assuming the best fit point of \mathcal{C}^{μ}_{q} **9**E 8 Upper limit: assuming ultimate systematic $R_{K}(1,1,6,0)$ Pull_{SM} 6 uncert. envisaged for 50 & 300 fb⁻¹ (1% for ratios & 4% for $B_s \rightarrow \mu^+ \mu^-$) Lower limit: assuming current systematic $R_{K^*}([1.1, 6.0])$ uncertainties do not improve 3 2 1 0^t 15 25 10 20 30 Luminosity [fb¹]

 \Box For the C_9^{μ} case, R_K can individually reach 5σ at $\sim 16 \text{ fb}^{-1}$

Projections for 3 benchmark points: 18, 50 and 300 $\rm fb^{-1}$

Using fit to clean observables R_K , R_{K^*} and $B_s \rightarrow \mu^+ \mu^-$ only

Pull _{SM} with $R_{K^{(*)}}$ and $BR(B_s \to \mu^+ \mu^-)$ prospects				
LHCb lum.	18 fb^{-1}	$50~{\rm fb^{-1}}$	$300 \ {\rm fb^{-1}}$	
δC_9^{μ}	6.5σ	14.7σ	21.9σ	
δC^{μ}_{10}	7.1σ	16.6σ	25.1σ	
δC^{μ}_{LL}	7.5σ	17.7σ	26.6σ	

 \Box For all three scenarios NP significance will be larger than 6 σ already with 18 ${
m fb}^{-1}$

Projections for 3 benchmark points: 18, 50 and 300 $\rm fb^{-1}$

Using fit to clean observables R_K , R_{K^*} and $B_s \rightarrow \mu^+ \mu^-$ only

Current data

Projections for 3 benchmark points: 18, 50 and 300 $\rm fb^{-1}$

Using fit to clean observables R_K , R_{K^*} and $B_s \rightarrow \mu^+ \mu^-$ only

Projections for 18 fb^{-1}

Projections for 3 benchmark points: 18, 50 and 300 $\rm fb^{-1}$

Using fit to clean observables R_K , R_{K^*} and $B_s \rightarrow \mu^+ \mu^-$ only

Projections for 50 fb^{-1}

Projections for 3 benchmark points: 18, 50 and 300 $\rm fb^{-1}$

Using fit to clean observables R_K , R_{K^*} and $B_s \rightarrow \mu^+ \mu^-$ only

Projections for 300 $\rm fb^{-1}$

- Updated data have kept the hierarchy of the preferred NP scenario while increasing the significance
- > Fit to clean observables and the rest of the $b \rightarrow s\ell\ell$ observables point towards compatible NP scenarios
- > Using clean observables, future data can pin down C_9 , C_{10} assuming that's where new physics is

- Updated data have kept the hierarchy of the preferred NP scenario while increasing the significance
- > Fit to clean observables and the rest of the $b \rightarrow s\ell\ell$ observables point towards compatible NP scenarios
- > Using clean observables, future data can pin down C_9 , C_{10} assuming that's where new physics is

Thank you!

Backup

Other clean $R_{\mu/e}$ to differentiate between preferred NP scenario

	Predictions assuming 50 $\rm fb^{-1}$ luminosity					
Obs.	C_9^{μ}	C_9^e	C^{μ}_{10}	C^e_{10}	C^{μ}_{LL}	C^e_{LL}
$R_{F_L}^{[1.1,6.0]}$	[0.922, 0.932]	[0.941, 0.944]	[0.995, 0.998]	[0.996, 0.997]	[0.961, 0.964]	[1.006, 1.010]
$R^{[1.1,6.0]}_{A_{FB}}$	[4.791, 5.520]	[-0.416, -0.358]	[0.938, 0.939]	[0.963, 0.970]	[2.822, 3.089]	[0.279, 0.307]
$R_{S_3}^{[1.1,6.0]}$	[0.922, 0.931]	[0.914, 0.922]	[0.832, 0.852]	[0.858, 0.870]	[0.853, 0.870]	[1.027, 1.032]
$R_{S_5}^{[1.1,6.0]}$	[0.453, 0.543]	[0.723, 0.742]	[1.014, 1.014]	[1.040, 1.048]	[0.773, 0.801]	[1.298, 1.361]
$R_{F_L}^{[15,19]}$	[0.998, 0.999]	[0.998, 0.998]	[0.998, 0.998]	[0.998, 0.998]	[0.998, 0.998]	[0.998, 0.998]
$R^{[15,19]}_{A_{FB}}$	[0.929, 0.944]	[0.988, 0.989]	[1.009, 1.010]	[1.036, 1.042]	[0.996, 0.996]	[1.023, 1.028]
$R_{S_3}^{[15,19]}$	[0.998, 0.998]	[0.998, 0.998]	[0.999, 0.999]	[0.999, 0.999]	[0.999, 0.999]	[0.998, 0.998]
$R_{S_5}^{[15,19]}$	[0.929, 0.944]	[0.988, 0.989]	[1.009, 1.010]	[1.036, 1.042]	[0.996, 0.996]	[1.023, 1.028]
$R_{K^*}^{[15,19]}$	[0.825, 0.847]	[0.815, 0.835]	[0.828, 0.846]	[0.799, 0.820]	[0.804, 0.825]	[1.093, 1.107]
$R_{K}^{[15,19]}$	[0.823, 0.847]	[0.819, 0.838]	[0.854, 0.870]	[0.825, 0.844]	[0.820, 0.839]	[1.098, 1.113]
$R_{\phi}^{[1.1,6.0]}$	[0.862, 0.879]	[0.841, 0.858]	[0.824, 0.843]	[0.795, 0.816]	[0.819, 0.839]	[1.070, 1.080]
$R_{\phi}^{[15,19]}$	[0.825, 0.847]	[0.815, 0.835]	[0.826, 0.845]	[0.797, 0.819]	[0.803, 0.824]	[1.093, 1.107]

 $\boldsymbol{R}_{\boldsymbol{K}}$

Fit to clean observables R_K , $R_{K^{(*)}}$, $B_S \to \mu^+ \mu^-$ and the rest of the $b \to s\ell\ell$ obs.

Depends on the assumptions on the non-factorisable power corrections

Multi-dimensional fit: C_7 , C_8 , C_9^ℓ , C_{10}^ℓ , C_S^ℓ , C_P^ℓ + primed coefficients

Set of WC	param.	$\chi^2_{ m min}$	$\operatorname{Pull}_{\mathrm{SM}}$	Improvement
\mathbf{SM}	0	225.8	-	-
C_9^μ	1	168.6	7.6σ	7.6σ
C_9^μ, C_{10}^μ	2	167.5	7.3σ	1.0σ
$C_7, C_8, C_9^{(e,\mu)}, C_{10}^{(e,\mu)}$	6	158.0	7.1σ	2.0σ
All non-primed WC	10	157.2	6.5σ	0.1σ
All WC (incl. primed)	20(19)	151.6	$5.5(5.6)\sigma$	$0.2(0.3)\sigma$

We assume future experimental results are in agreement with one of the current NP scenarios from the fit to clean observables

assuming the best fit point of C_{10}^{μ}

Instead of making assumptions on the size of the power corrections h_{λ} , they can be parameterised by a general ansatz (compatible with the analyticity structure): [Jäger, Camalich, 1412.3183], [Ciuchini et al. 1512.07157] $h_{\pm,[0]} = \left[\sqrt{q^2} \times\right] \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)}\right)$

 \Rightarrow NP effects in C_9 are embedded in the hadronic contributions [A. Arbey, T. Hurth, F. Mahmoudi, SN, 1806.02791] Due to the embedding, fits to NP and hadronic contributions can be compared with the Wilks' test

- \succ Fit to δC_9 improves description of the data with 6σ compared to the SM (w/o any uncertainty for p.c.)
- Hadronic fit also describes the data well
- > Adding 17 more parameters compared to the NP in C_9 doesn't significantly improve the fit (~1.5 σ)

The hadronic fit includes 18 free parameters

 $\succ h_{\lambda}$ compatible with zero at 1σ level

 \rightarrow too many free parameters to get strongly constrained with current data

A (minimal) description of hadronic contributions with fewer free parameters

$$h_{\lambda}(q^2) = -\frac{\tilde{V}_{\lambda}(q^2)}{16\pi^2} \frac{q^2}{m_B^2} \Delta C_9^{\lambda, \text{PC}}$$

for each helicity ($\lambda = +, -, 0$) a different $\Delta C_9^{
m PC}$

 \rightarrow three real (six complex) parameters

➢ If NP in C₉ is the favoured scenario, the three different fitted helicities should give the same value
 ⇒ Can work as a null test for NP

$B \to K^* \bar{\mu} \mu / \gamma$ observables				
$\chi^2_{\rm SM} = 8$	$(\chi^2_{\rm SM} = 85.15, \ \chi^2_{\rm min} = 39.40; \ {\rm Pull}_{\rm SM} = 5.5\sigma)$			
	best fit value			
$\Delta C_9^{+,\mathrm{PC}}$	$(3.39 \pm 6.44) + i(-14.98 \pm 8.40)$			
$\Delta C_9^{-,\mathrm{PC}}$	$(-1.02 \pm 0.22) + i(-0.68 \pm 0.79)$			
$\Delta C_9^{0,\mathrm{PC}}$	$(-0.83 \pm 0.53) + i(-0.89 \pm 0.69)$			

Fitted parameters not the same for different helicities but in agreement with each other within 1σ

Fit to only BR($B o K^* \gamma$) and $B o K^* \mu^+ \mu^-$ observables (low q^2)					
	Real δ <i>C</i> 9 (1)	Hadronic fit; Complex $\Delta C_9^{\lambda, \mathrm{PC}}$ (6)			
Plain SM (0)	(6.0 <i>σ</i>)	(5.5σ)			
Real δC_9 (1)		(1.8 σ)			

 \succ Adding the hadronic parameters improve the fit with less than 2σ significance

Strong indication that the NP interpretation is a valid option, although the situation remains inconclusive