

Introduction

► Can Dark Matter (DM) be produced together with a Standard Model (SM) Higgs boson?

- Look for large missing transverse energy and a Higgs boson decaying to two *b*-quarks $(E_T^{\text{miss}} + h \rightarrow bb)$ from ATLAS *pp* collision ($\sqrt{s} = 13$ TeV, 139 fb⁻¹).
- Consider two types of DM models for interpretation. **2HDM+a:** highlighted by LHC DM WG and rich in
 - phenomenology.

Figure 1: Representative diagrams for 2HDM+a Figure 2: Representative with ggF (left) and bbA (right) production.

Event selections and categorization

 \blacktriangleright Select events with $E_{T}^{miss} > 150$ GeV, no lepton, and a $h \rightarrow b\bar{b}$ candidate reconstructed with two methods:

- Figure 3: Illustration of resolved and boosted regimes.
- Additional kinematic cuts to further suppress background: mainly for multi-jet and $t\bar{t}$.
- Split in E_{T}^{miss} to enhance sensitivity to different mediator

Search for Dark Matter produced in association with a Standard Model Higgs boson decaying to *b*-quarks in *pp* collisions at 13 TeV with the ATLAS detector

Jay Chan (University of Wisconsin-Madison) On behalf of the ATLAS collaboration **EPS-HEP 2021**

diagram for Z'2HDM.

Resolved regime

 $E_{\rm T}^{\rm miss}$ < 500 GeV): 2 **b**-tagged small-R jets

Boosted regime

(R = 0.4).

 $(E_{T}^{miss} > 500 \text{ GeV})$: 1 single large-R jet (R = 1)with 2 associated **b**-tagged variable-R track-jets.

masses.

Extra \geq 3 *b*-tag bins: target 2HDM+a bbA production.

Background Modeling

- Background modeled with Monte Carlo simulation.
- \blacktriangleright Main backgrounds: Z, $t\bar{t}$ and W.
- Dedicated control regions (CR) to constrain background normalization:
 - ▷ **2-lepton CR** for **Z**.
 - ► Require 2 muons or 2 electrons.
 - \triangleright **1-muon CR** for $t\bar{t}$ and, W.
 - ► Require 1 muon and no electron.
 - Split in muon charge to disentangle $t\bar{t}$ and, W.

Leptons treated as invisible particles in E_{T}^{miss} calculation to mimic kinematics in signal regions.

Results

- A simultaneous fit in m_{bb} spectrum to all E_{T}^{miss} and **b**-tag bins of signal and control regions is performed to test different signal hypotheses.
- Main systematic uncertainties include background modeling ($\sim 20\%$), *b*-tagging ($\sim 4\%$) and jet energy resolution ($\sim 20\%$).
- ► No significance excess found in all tested signal models.

10³

 10^{-1}

Interpretation

- Exclusion limits are set on benchmark models: ▶ **2HDM**+a (Fig. 6)
 - for ggF (bbA) production.
- ▷ **Z'2HDM** (Fig. 7)
- Exclusion region set in $m_{Z'}$ - m_A plane.
- Exclusion of $m_{Z'}$ extends to 3.6 TeV.
- exclusively (Fig. 8).

 - \triangleright m_{bb} bins are merged into a single bin to reduce model-dependency.

Figure 6: 2HDM+a exclusion with ggF (left) and bbA (right) produc-

Exclusion region set in m_a - m_A plane with tan β set at 1 (10)

► Large sensitivity improvements with respect to 36 fb⁻¹ results. ► First time reaching sensitivity to bbA production.

See results!

Finally, upper limits are set on visible cross-sections in a model-independent context for each signal region

 $\triangleright \sigma_{\mathrm{vis}, h\left(b\bar{b}\right) + \mathrm{DM}} \equiv \sigma_{h\left(b\bar{b}\right) + \mathrm{DM}} \times \mathcal{B}\left(h \to b\bar{b}\right) \times \left(\mathcal{A} \times \epsilon\right)$