

Measurement of the muon precession frequency in magnetic field at Fermilab

Alberto Lusiani, for the FNAL Muon g-2 collaboration Scuola Normale Superiore and INFN, sezione di Pisa

Introduction

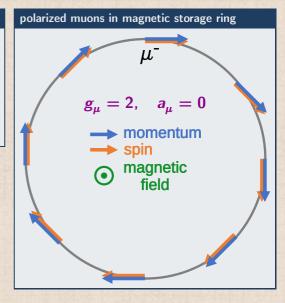
muon magnetic anomaly a_{μ}

$$\vec{\mu}_{\mu} = g_{\mu} \frac{q}{2m} \vec{L}, \quad a_{\mu} = \frac{g_{\mu} - 2}{2} \quad \begin{cases} \vec{\mu}_{\mu} \text{ muon magnetic momentum} \\ g_{\mu} \text{ muon gyromagnetic ratio} \\ a_{\mu} \text{ muon anomaly or anomalous magnetic moment} \end{cases}$$

- ► a_μ measured to 0.46 ppm at FNAL in April 2021 EPS-HEP presentation <u>A. Keshavarzi, 28 Jul 14:45</u>

muon anomalous precession frequency ω_a

- this presentation
- April 2021 paper: Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g-2 Experiment, doi:10.1103/PhysRevD.103.072002

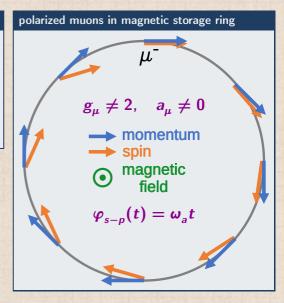

Anomalous muon precession frequency in uniform magnetic field, ω_a

$\omega_a = \text{angular velocity of muon spin vs. momentum}$

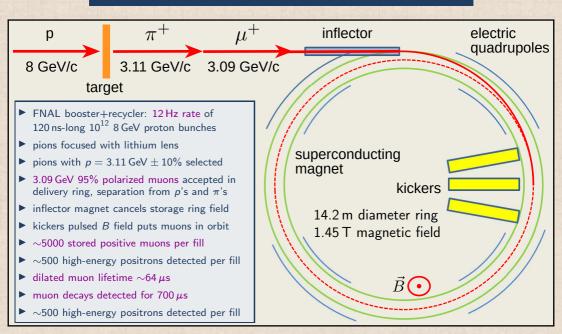
$$\begin{array}{cccc} \omega_s & - & \omega_c & = & \omega_a \\ \hline -g_\mu \frac{eB}{2m_\mu} - (1-\gamma) \frac{eB}{m_\mu \gamma} & - & -\frac{eB}{m_\mu \gamma} & = & -a_\mu \frac{eB}{m_\mu} \end{array}$$

Larmor + Thomas cyclotron no $\gamma!$ spin precessions frequency

transverse motion in uniform magnetic field

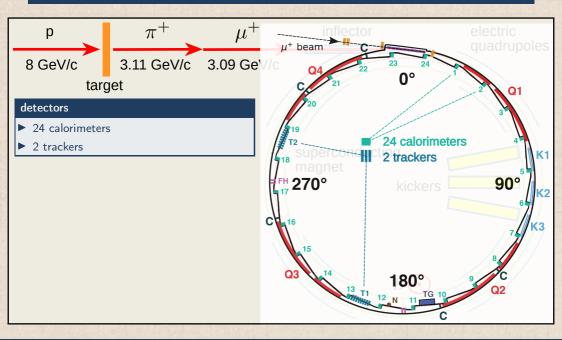

Anomalous muon precession frequency in uniform magnetic field, ω_a

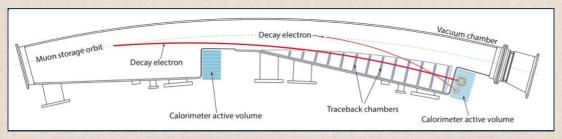
ω_a = angular velocity of muon spin vs. momentum


$$\begin{array}{ccc} \omega_s & - & \omega_c & = & \omega_a \\ \hline -g_\mu \frac{eB}{2m_\mu} - (1-\gamma)\frac{eB}{m_\mu \gamma} - \left[-\frac{eB}{m_\mu \gamma} \right] = \left[-a_\mu \frac{eB}{m_\mu} \right] \end{array}$$

 $\begin{array}{ccc} {\sf Larmor+Thomas} & {\sf cyclotron} \\ {\sf spin precessions} & {\sf frequency} \end{array} \quad {\sf no} \; \gamma!$

transverse motion in uniform magnetic field


Positive muon production, storage and decay at FNAL


FNAL-E989 storage ring and detectors

Positrons from positive muon decays are detected inside the storage ring

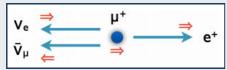
Calorimeter and tracker modules

calorimeter

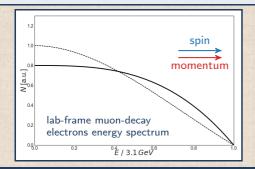
- \triangleright 6 \times 9 PbF₂ crystals per module
- ► Cherenkov light collected ⇒ fast
- ▶ SiPM readout
- ► EM shower energy resolution 3% at 3 GeV
- laser-based gain monitoring
- measures positrons energy
- detects lost muons, identified with coincidences

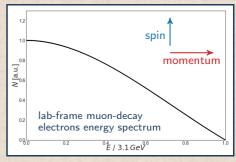
tracker

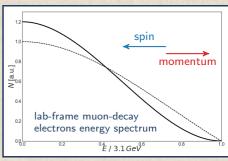
- ▶ 8 modules \times 4 layers \times 32 straw chambers
- \blacktriangleright $\pm 7.5^{\circ}$ stereo angle w.r.t. vertical
- ► track positrons to measure beam profile
- ► also track lost muons


Run 1 data datasets, collected in 2018

Dataset	# Days (Apr-Jun 2018)	Tune (n)	Kicker (kV)	# fills [10 ⁴]	# positrons [10 ⁹]
1a	3	0.108	130	151	0.92
1b	7	0.120	137	196	1.28
1c	9	0.120	132	333	1.98
1d	24	0.107	125	733	4.00


- ► four datasets, each with approximately stable beam conditions
- ▶ total of 8.2 billion positrons collected since 30 μ s after injection and with E > 1.7 GeV corresponds to $\sim 1.2 \times$ the BNL statistics, 6% of the FNAL goal of $21 \times BNL$
- \blacktriangleright $\omega_a \propto \omega_p$, but magnetic field actively stabilized to ~ 1 ppm in whole Run 1

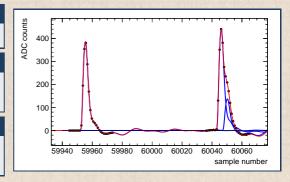

Measurement of angular velocity of muon spin w.r.t momentum


parity violation in positive muon+ decay ⇒
 ⇒ decay positrons peak along muon spin

 positrons decaying along muon momentum have highest energy in laboratory frame

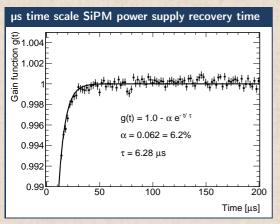
Reconstruction of positron energy deposits in calorimeters

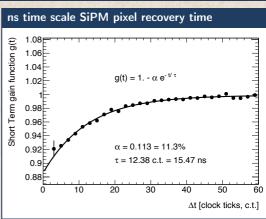
readout


► record SiPM ADC counts for deposits > 50 MeV

fit samples using crystal pulses templates

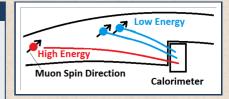
- distinct template for each crystal from data
- ▶ fit one or more superposed templates

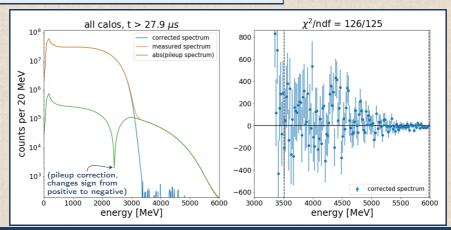

two reconstruction algorithms


- ► local: fit individual crystals
- global: global fit over multiple crystals

Calorimeter gain variation, measured with laser pulses and corrected

- ► SiPM gain is reduced by occurrence of preceding hits
- \triangleright gain monitored by reading back reference laser light pulses injected in PbF₂ crystals
- positron energy measurement from SiPM readout corrected for average measured gain loss

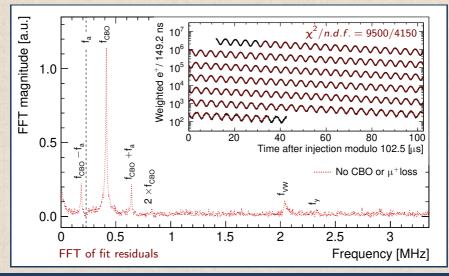




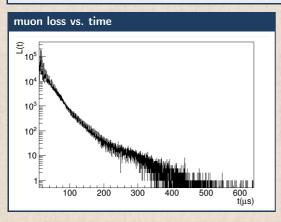
Pileup, statistically subtracted

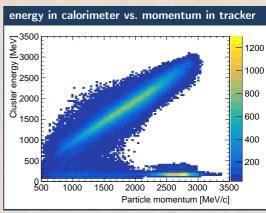
3 methods of pileup estimation

- combine hit with 2nd hit in shadow window
 - \blacktriangleright (1) sum 2 hits using model to get E, t
- ▶ (2) reconstruct pileup hit using all crystals ADC counts
- ▶ (3) convolve hit density $\rho(E,t)$, then use estimated pileup and iteratively solve for the pileup-subtracted $\rho'(E,t)$



Muon precession, 5 parameters ω_a fit model

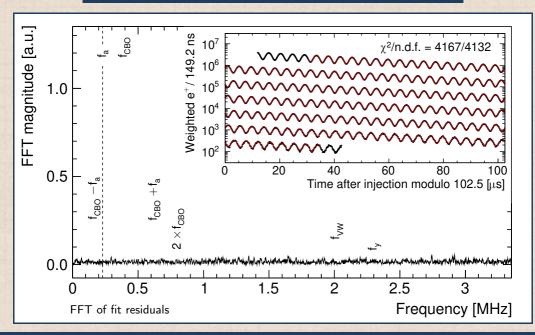

ightharpoonup number of positron decays with $E>\sim$ 1.7 GeV, binned over time, from 30 to 650 μ s


• fit with
$$N(t) = N_0 e^{-t/\tau_{\mu}} \left[1 + A \cos(\omega_a t + \varphi) \right]$$

Extend ω_a fit model to account for lost muons on collimators

- some muons hit collimators and are lost
- ▶ muon loss rate during a fill measured with 3-4-5 coincidences of m.i.p. on calorimeters
- overall normalization of muon loss included as fit parameter

Extend ω_a fit model to account for beam dynamics


- transverse beam center and spread (waist) oscillate (betatron oscillations)
- ightharpoonup beam oscillations modulate recorded positrons N(t) because detector acceptance varies
- \triangleright N(t) effectively modulated by beatings of beam oscillations and cyclotron and anomaly frequencies
- operational issues in Run 1 make beame oscillations frequencies varying during fills

beam synamics with field	d index	n = 0.12	f [MHz]	T [μs]
Anomalous precession	f_a		0.2291	4.3649
Cyclotron	f_c		6.7024	0.1492
Horizontal betatron	f_{\times}	$= f_c \sqrt{1-n}$	6.2874	0.1590
Vertical betatron	$f_{_{V}}$	$= f_c \cdot \sqrt{n}$	2.3218	0.4307
Coherent betatron oscillation	f_{CBO}	$= f_c - 1 \cdot fx$	0.4150	2.4097
Vertical oscillation	f_{VO}	$= f_c - 1 \cdot fy$	4.3806	0.2283
Vertical waist	f_{VW}	$= f_c - 2 \cdot fy$	2.0589	0.4857

Muon precession, 22-parameters ω_a fit

$$\begin{split} N(t) &= \textit{N}_{0} \, e^{-\frac{t}{\gamma \tau}} \left(1 + \textit{A} \cdot \textit{A}_{BO}(t) \cos(\omega_{a} \, t + \varphi + \varphi_{BO}(t)) \right) \cdot \textit{N}_{CBO}(t) \cdot \textit{N}_{VW}(t) \cdot \textit{N}_{y}(t) \cdot \textit{N}_{2CBO}(t) \cdot \textit{\Lambda}(t) \\ \textit{A}_{BO}(t) &= 1 + \textit{A}_{A} \cos(\omega_{CBO}(t) \cdot t + \varphi_{A}) e^{-\frac{t}{\tau_{CBO}}} \\ \varphi_{BO}(t) &= A_{\varphi} \cos(\omega_{CBO}(t) \cdot t + \varphi_{\varphi}) e^{-\frac{t}{\tau_{CBO}}} \\ \textit{N}_{CBO}(t) &= 1 + \textit{A}_{CBO} \cos(\omega_{CBO}(t) \cdot t + \varphi_{CBO}) e^{-\frac{t}{\tau_{CBO}}} \\ \textit{N}_{2CBO}(t) &= 1 + \textit{A}_{2CBO} \cos(2\omega_{CBO}(t) \cdot t + \varphi_{2CBO}) e^{-\frac{t}{\tau_{VCBO}}} \\ \textit{N}_{VW}(t) &= 1 + \textit{A}_{VW} \cos(\omega_{VW}(t) \cdot t + \varphi_{VW}) e^{-\frac{t}{\tau_{VW}}} \\ \textit{N}_{y}(t) &= 1 + \textit{A}_{y} \cos(\omega_{y}(t) \cdot t + \varphi_{y}) e^{-\frac{t}{\tau_{y}}} \\ \textit{\Lambda}(t) &= 1 - \textit{k}_{LM} \int_{t_{0}}^{t} \textit{L}(t') e^{t'/\tau} \, dt' \\ \omega_{CBO}(t) &= \omega_{O}^{CBO} + \frac{\textit{A}}{t} e^{-\frac{t}{\tau_{A}}} + \frac{\textit{B}}{t} e^{-\frac{t}{\tau_{B}}} \\ \omega_{y}(t) &= \textit{F}\omega_{CBO}(t) \sqrt{2\omega_{c}/\textit{F}\omega_{CBO}(t) - 1} \\ \omega_{VW}(t) &= \omega_{c} - 2\omega_{y}(t) \end{split}$$

22 parameters ω_a fit has $\chi^2/\text{n.d.o.f.}$ consistent with 1

6 analysis groups, 4 analysis methods, 11 ω_a fits \times 4 datasets

4 analysis methods

► T (threshold):
$$\sum N(E)$$
 $E > 1.7 \text{ GeV}$

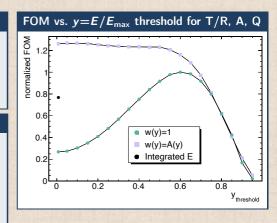
► R (ratio): (see below)
$$E > 1.7 \,\text{GeV}$$

► A (asymmetry):
$$\sum A(E) \cdot N(E)$$
 $E > 1.0 \text{ GeV}$

▶ Q (charge): ∑ energy deposits no threshold

ratio method

randomly split positron dataset in 4 subsets


$$R(t) = \frac{n_1(t + \frac{T_a}{2}) + n_2(t - \frac{T_a}{2}) - n_3(t) - n_4(t)}{n_1(t + \frac{T_a}{2}) + n_2(t - \frac{T_a}{2}) + n_3(t) + n_4(t)}$$

$$= A\cos(\omega_a t + \varphi)$$

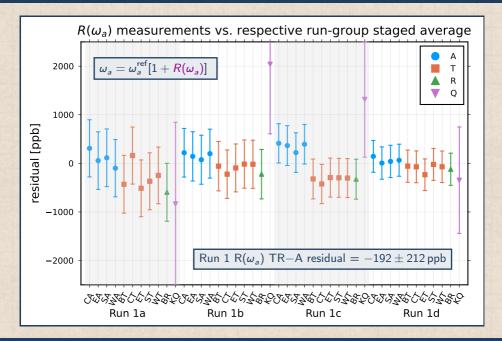
removed exponential decay envelope

two levels of blind analysis

- relative blindings between any ω_a analysis groups
- \triangleright global blinding of the a_{μ} result

Run 1 $R(\omega_a)$ values and uncertainties (11 systematics categories)

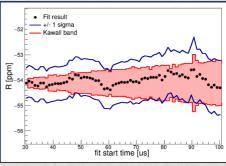
Run 1d

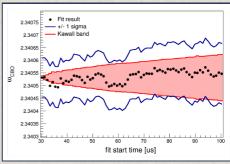

Run 1a											
<u>"</u>											
R Runia [ppb]	CA	EA.	SA	VA	97	CT	ET	ST	WT	18	300
val	-20220.022	-28481.292	-28422.823	-28637.307	-28802.286	-28211.122	-20004.793	-28739.823	-20519.947	-28966.786	-29206.209
usc	1200.499	1201.164	1211.600	1221.056	1360.041	1330.227	1334.718	1335.002	1332.590	1361.011	2060.321
stat sys5	1207.920 37.401	1193.750	1206.100	1218.350	1359.170	1337.677	1332.700	1331.350	1330.790	1359.810	2058.500 201.322
Time randomization need	6,536	26,020	27,000	16,000	20,200	6.711	31,370	22,500	16,000	22,500	0.000
Time correction	6.726	0.000	0.000	0.000	0.000	5.310	0.000	0.000	0.000	0.000	0.000
Cluster time assignment	0.000	1.000	1,000	1.000	1,000	0.000	1.000	1,000	1.000	1,000	0.000
In-fill gain applitude	4.411	21.431	1.900	14,300	7.790	3,905	23,620	2,500	15,300	2,718	5.000
In-fill gain time constant	5.612	0.000	1.000	0.000	20.222	5.532	0.000	2,300	0.000	11,689	8.000
STDP gain amplitude	0.177	0.000	0.000	2,600	0.091	0.005	0.100	0.000	0.000	0.053	0.000
STDP gain time constant	0.734	0.000	0.000	0.000	0.000	0.145	0.000	0.000	0.000	0.000	0.000
Pileup covariance matrix	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	15,000
Pileup amplitude	0.744	16.211	14,000	13,800	21,700	0.905	17,245	19,000	16,200	19,900	0.000
Pileup cluster time model	0.000	50.921	47.000	0.000	5.100	0.000	12.502	8.500	0.000	6.400	0.000
Pileup cluster energy model	0.000	7.005	11.000	0.000	11.000	0.000	11.650	12.000	0.000	10.900	0.000
Pileup phase	0.000	0.000	0.000	39.600	0.000	0.000	0.000	0.000	5.500	0.000	0.000
Pileup time/energy bias	0.150	0.000	0.000	0.000	0.000	0.027	0.000	0.000	0.000	0.000	0.000
Pileup rate error	0.033	0.000	0.000	0.000	0.000	0.193	0.000	0.000	0.000	0.000	0.000
Unneen pileup	0.946	1.100	0.300	10.000	0.800	3.413	5.300	5.400	10.000	0.600	0.000
Triple pileup correction	0.000	4.600	4.400	1.000	1.900	0.000	3.300	4.200	1.000	1.600	0.000
Pileup simulation	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.000
Pileup artificial dead time	0.000	67.700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Loss covariance matrix	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Loss time cuts	0.808	0.000	0.500	0.000	0.500	0.076	0.000	0.500	0.000	0.300	0.000
Loss energy cuts Loss statistics	1,596	0.000	0.000	0.000	0.000	1,522	0.000	0.000	0.000	0.000	0.000
Loss detection efficiency	1.075	0.000	0.000	0.000	0.000	1.952	0.000	0.000	0.000	0.000	0.000
Fixed loss scale	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.900	0.000
Righer-order coincidences	0.000	0.700	0.500	0.000	0.000	0.000	0.700	0.500	0.000	0.000	17.000
CEO frequency change	5.638	11.600	7,100	19.000	10.900	4.299	9,800	5.600	17,000	5,300	5.500
CBO decoherence envelope	24.046	39.700	19,700	26,000	38,300	23.226	22,000	17,500	26,500	5.500	4,100
CBO time constants	4,145	14,200	2,000	11.000	10,800	8.079	2,700	2,000	13,000	10,800	6,000
Fixed CBO time constant	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Vertical drift	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	190,000
Muon precession period	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2,300	0.000
Muon lifetime	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Run 1b											
R Runib [sob]	CA	- 1	SA	100	27	er.	ET	ST	VT	18	XQ.
val	-26946,590	-27021.291	-27091.047	-26965.693	-27044.193	-27209.341	-27000.591	-27001.927	-27004.863	-27209.293	-24946, 396
VAL UBC	1025, 180	1018.880	1025,971	1035.843	1157.710	1135.260	1121.992	1129.788	1129,631	1150,404	1759.574
stat	1023.270	1012.020	1022.200	1030.180	1156.130	1133.504	1120.300	1129.100	1127.740	1157,420	1747.000
avat.	62,540	118.034	86,946	109,166	60.455	61.011	61.587	61.745	65.338	49.651	203.212
Time randomization need	5,404	23,600	17,100	13.000	19,100	5.663	26,300	19,500	14,000	20,100	0.000
Time correction	1,473	0.000	0.000	0.000	0.000	1.024	0.000	0.000	0.000	0.000	0.000
Cluster time assignment	0.000	1.000	1,000	1,000	1,000	0.000	1.000	1,000	1.000	1.000	0.000
In-fill gain amplitude	2.373	6.475	6.400	20,900	3.282	3.657	6.662	3.500	22,600	0.529	4.000
In-fill gain time constant	3.660	0.000	2,300	0.000	9.776	10.372	0.000	7.700	0.000	3.231	2.000
STDP gain amplitude	0.075	0.009	0.000	0.400	0.042	0.009	0.068	0.000	1.400	0.042	0.000
STOP gain time constant	0.443	0.000	0.000	0.000	0.000	0.343	0.000	0.000	0.000	0.000	0.000
Pileup covariance matrix	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	15.000
Pileup amplitude	0.469	14.033	12.000	12.500	11.400	0.818	6.644	10.600	7.000	11.400	0.000
Pileup cluster time model	0.000	64.159	53.000	0.000	4.600	0.000	14.223	7.200	0.000	4.000	0.000
Pileup cluster energy model	0.000	8.041	8.000	0.000	4.800	0.000	11.189	11.000	0.000	7.200	0.000
Pileup phase	0.000	0.000	0.000	42.500	0.000	0.000	0.000	0.000	6.000	0.000	0.000
Pileup time/energy bins	0.162	0.000	0.000	0.000	0.000	0.029	0.000	0.000	0.000	0.000	0.000
Pileup rate error	0.017	0.000	0.000	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000
Unneen pileup Triple pileup correction	2.912 0.000	2.900 4.959	1.600	10.000	1.300	1.764	1.476	8.100 2.900	10.000	0.100	0.000
Pileup simulation	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10,000
Pileup similation Pileup artificial dead time	0.000	60.900	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Loss covariance matrix	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Loss time cuts	1.490	0.000	1.000	0.000	0.100	1.451	0.000	1.000	0.000	0.100	0.000
Loss energy cuts	0.000	0.000	0.500	0.000	0.100	0.000	0.000	0.500	0.000	0.100	0.000
Loss statistics	0.770	0.000	0.000	0.000	0.000	0.727	0.000	0.000	0.000	0.000	0.000
Loss detection efficiency	0.618	0.000	0.000	0.000	0.000	0.577	0.000	0.000	0.000	0.000	0.000
Fixed loss scale	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3,400	0.000
Righer-order coincidences	0.000	0.600	0.500	0.000	0.000	0.000	1,100	0.500	0.000	0.000	3,000
CEO frequency change	14,216	12,200	12,500	18,000	22,500	12,135	11.200	11,800	15,000	0.700	16,000
CEO decoherence envelope	2,490	7,100	2,800	10,000	3,700	8.044	13,700	2,900	7,000	9,100	1,000
CEO time constants	41.000	2.600	11.000	45.000	23.100	36.225	3.500	9.000	30.000	21.000	8.000
Fixed CEO time constant	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.000	0.000
Vertical drift	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	200.000
Muon precession period	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.300	0.000
Muon lifetime	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ad hoc correction	19.560	17.000	13.800	37.300	11.800	19.470	33.000	34.000	14.700	15.300	0.000

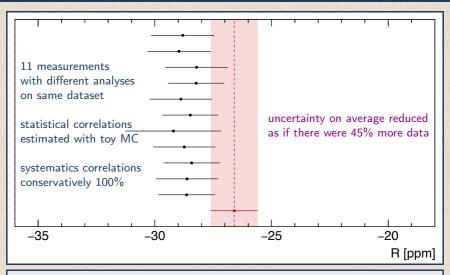
Rum 1c A main (pas) A main (

Ituli Iu											
R Runid Foob!	CA	EA.	SA	98	87	cr	ET	ST	VT		
	-27590, 211	-977797 599	-27694 497	-27002 444	-27701 994	-97715 941	-97877 199	-27565 0A7	-97714 364	-27765 394	-27990 498
val	677,405	672,330	677.201	692,522	761.733	740.292	744.367	747.210	744,932	759.068	1200.346
stat	675-823	667.947	672,960	679,850	750.400	747 -400	743.493	744.140	743,690	757.600	1269.000
avet	46,264	76.641	76,550	60.337	71.176	36.532	36.069	67.757	42.992	47.187	222,428
Time randomization need	3.632	12,600	11,900	6.000	12.300	3.737	10,900	11.000	7.000	13.700	0.000
Time correction	1.024	0.000	0.000	0.000	0.000	3.737	0.000	0.000	0.000	0.000	0.000
Cluster time assignment	0.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000	1.000	1.000	0.000
In-fill gain amplitude	0.042	3.850	5.100	9,800	2.360	0.048	0.643	9.000	14,100	1.002	8.000
In-fill gain time constant	0.694	0.000	3.200	0.000	13.293	0.000	0.000	7.300	0.000	6.505	2.000
STOP gain applitude	0.122	0.000	0.000	2,600	0.074	0.095	1.200	0.000	0.800	0.095	0.000
STDP gain time constant	0.594	0.000	0.000	0.000	0.000	0.504	0.000	0.000	0.000	0.000	0.000
Pileup covariance matrix	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	15.000
Pileup applitude	0.355	0.000	7,000	6,300	10.100	0.340	10.378	5.600	9,500	9.400	0.000
Pileup cluster time model	0.000	47,500	41.000	0.000	5.000	0.000	7.527	5.600	0.000	4,000	0.000
Pileup cluster energy model	0.000	7,000	7,000	0.000	10,000	0.000	0.429	10,000	0.000	6,800	0.000
Pileup phase	0.000	0.000	0.000	34,900	0.000	0.000	0.000	0.000	4,400	0.000	0.000
Pileup time/energy bias	0.101	0.000	0.000	0.000	0.000	0.019	0.000	0.000	0.000	0.000	0.000
Pileup rate error	0.009	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000
Unneen pileup	0.142	0.800	3,500	10,000	4,100	0.232	0.700	0.200	10,000	2,400	0.000
Triple pileup correction	0.000	4,637	3,900	1.000	1,600	0.000	2,330	1,400	1.000	1.300	0.000
Pileup simulation	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10,000
Pileup artificial dead time	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Loss covariance matrix	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Loss time cuts	2,035	0.000	1.000	0.000	0.100	2.024	0.000	1.000	0.000	0.100	0.000
Loss energy cuts	0.000	0.000	0.500	0.000	0.100	0.000	0.000	1,000	0.000	0.500	0.000
Loss statistics	0.802	0.000	0.000	0.000	0.000	0.778	0.000	0.000	0.000	0.000	0.000
Loss detection efficiency	1.171	0.000	0.000	0.000	0.000	0.861	0.000	0.000	0.000	0.000	0.000
Fixed loss scale	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.100	0.000
Righer-order coincidences	0.000	0.400	0.500	0.000	0.000	0.000	1,200	0.500	0.000	0.000	3,000
CEO frequency change	0.634	25,000	13,300	23,000	22,200	0.606	1.400	0.500	21,000	8,500	33,000
CEO decoberence envelope	30,003	5,000	3,200	1,000	25.300	32.052	9,600	9,200	1,500	18,000	38,000
CEO time constants	7,063	0.600	1,000	2,000	10,500	3.316	0.800	8,000	6,000	9,000	3,000
Fixed CBD time constant	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Vertical drift	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	208.000
Muon precession period	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.300	0.000
Muon lifetime	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ad hoc correction	3.544	6.000	38.000	7.000	18.800	0.518	13.200	50.000	12.000	6.700	0.000
		_									

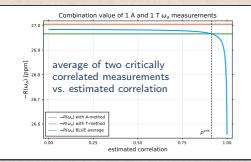

In each of 4 datasets, 11 ω_a measurements are consistent between each-other

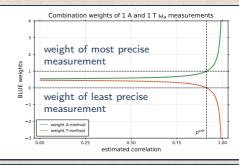


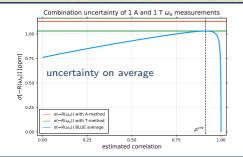
A large number of consistency checks have been completed


- fit results ought to be stable vs. chosen start time
- similar checks check performed vs.
 - calorimeter station
 - bunch number
 - Run number
 - time of day

 - positron energy bin
 - position within calorimeter




Average of 11 ~critically correlated measurements with imprecise correlation



- statistical correlations estimations have limited precision
- systematic correlations estimated conservatively to avoid underestimation
- ightharpoonup \Rightarrow minimum χ^2 combination (=BLUE) not reliable

Critical correlation: $C_{ij}^{\text{crit}} = \rho^{\text{crit}} = \min(\sigma_i, \sigma_j) / \max(\sigma_i, \sigma_j)$ $(i \neq j)$

Least χ^2 average of 2 meas. around $\rho = \rho^{\text{crit}}$

- ightharpoonup unstable vs. value of estimated correlation ho
- ► Glen Cowan, Stat. Data Analysis, sec. 7.6.1
- ► Valassi & Chierici 2014, EPJC 74 (2014) 2017
- but no literature really appropriate for our case

Average the four most statistically precise A-method analyses (on each of four datasets)

even weights, disregarding imprecise correlations

- ▶ 50% of weight to 1 A-method analysis using one of the two reconstructions
- ▶ 50% of weight to 3 A-method analyses using the other reconstruction
 - ightharpoonup weight = 1/3 of 50% each
- robust procedure, close to optimal combination

measurements with methods T, R, Q used for checks

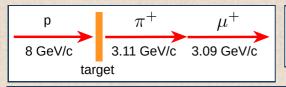
- ightharpoonup T and R methods are \sim 11% less precise than A (Q is even less precise)
- ▶ optimal combination T, R, Q weights non negligible only if T and/or R and/or Q measurements had much smaller systematics than A, which is not observed in present estimations

Synthetic $\overline{\omega_a^m}$ FNAL Run 1 measurement

$R(\omega_a) = (\omega_a - \omega_a^{ref}) \cdot 10^9$	FNAL Run 1 [ppb]	FNAL goal [ppb]	BNL [ppb]
value	-82357		
total uncertainty	437	122	487
statistical uncertainty	434	100	460
systematic uncertainty	56	70	160
- Gain changes	8	20	120
- Pileup	35	40	80
- Coherent Betatron Oscillation	38	30	70
- Time randomization (to remove "fast rotation")	9		
- Residual slow term	17		
- Other	3		

notes

▶ the FNAL total systematics goal includes other systematics that are not discussed here


Conclusions

- \blacktriangleright positive muon anomalous precession frequency ω_a^m measured at FNAL to 0.44 ppm
- with 6% of design goal statistics, ω_a^m systematics quite close to design goal

Thanks for your attention!

Production of polarized muons

- dump 8 GeV protons on target to produce pions
- ▶ select pions with momemtum $p \simeq 3.11 \,\text{GeV}$
- ► let them decay into muons
- in pion rest frame, because of parity violation in pion decay, μ^- spin is aligned with momentum (μ^+ spin is anti-aligned with momentum)
- ▶ in laboratory frame, highest energy muons are >90% polarized

ullet with 8 GeV protons on target, μ^+ are produced \sim 4imes more frequently than μ^-

Subsamples ω_a^m measurements

$R(\omega_a^m)$	1a	1b	1c	1d
value	-83123	-81738	-82347	-82395
uncentainty	1209	1025	825	676
statistical	1207	1022	823	675
systematic	64	70	54	49

statistical correlation

	1a	1b	1c	1d
1a	1.0000	0.0000	0.0000	0.0000
1b	0.0000	1.0000	0.0000	0.0000
1c	0.0000	0.0000	1.0000	0.0000
1d	0.0000	0.0000	0.0000	1.0000

systematic correlation

	1a	1b	1c	1d
1a	1.0000	0.9935	0.9884	0.9812
1b	0.9935	1.0000	0.9820	0.9936
1c	0.9884	0.9820	1.0000	0.9669
1d	0.9812	0.9936	0.9669	1.0000