

Level-1 muon triggers algorithms for the CMS upgrade at the HL-LHC

Introduction:

High luminosity LHC (HL-LHC) implies challenging conditions with an increase in pile-up of a factor of 5.

This means:

- Aging of the detectors in high radiation environment must be checked.
- Higher occupancy in the detector yield a complex reconstruction process.
- Level-1 (L1) muon rate will increase: need a precise p_T measurement to keep the rate under control without increase the p_{T} threshold.

The L1T upgrade will:

- Allow a maximum rate of 750 kHz at a latency of 12.5 µs.
- run on commercial FPGAs processors.
- Include new reconstruction algorithms that will improve the efficiency of Run 2 keeping the rate under control and trigger on exotic signatures as long lived particles.

• Increase η coverage: adding iRPC and GEM subdetectors The upgrade of the three muon track finder algorithms (MTF) and the global muon trigger is presented

Barrel Muon Track Finder:

DTs + RPCs **Reconstruction based on Kalman Filter:**

- Used successfully for Run 2
- Seeding: uttermost muon detector.
- For each hit estimation of: k (curvature), ϕ (position) and ϕ_b (bending).
- Propagate inwards, selecting hit in next station according to compatibility.
- Update parameters and repeat until last DT station.

Clara Ramón Álvarez (University of Oviedo - ICTEA) on behalf of the CMS Collaboration EPS Conference – 26-30 July 2021

Endcap Muon Track Finder:

RPCs + CSCs + GEMs**Phase-I algorithm rate scales non-linearly with PU** \rightarrow **new** strategy (EMTF++) **Reconstruction based on Deep Neural Network (DNN):**

Pattern recognition techniques to identify trigger primitives

- compatible with muon trajectories. • Angular position (ϕ and θ), bending, time and quality used as input
- to NN. • DNN estimates the most likely p_T of the muon. High efficiency (>95%) for pt > 20 GeV -> significant improvement wrt. Phase-I, also rate increase slower as a function of PU.

The CMS Collaboration. *The Phase-2 Upgrade of the CMS Level-1 Trigger*, CERN-LHCC-

Global Muon Trigger:

Several Options to combine L1 tracks with information from muon chambers:

- **Track + MTF**: geometrical matching of tracker and standalone tracks.
- **Track + stub**: matching of tracker + single muon station segment.

Combining information yields to:

- Better muon p_T estimation.
- Smaller rate, allowing L1 seeding with lower p_T .
- Track+stub: reduces "gaps" between DT wheels.

Featuring more sophisticated or topological triggers: muon isolation, $\tau \rightarrow 3 \mu$, HSCP...

Overlap Muon Track Finder:

DTs + RPCs + CSCs **Reconstruction based on Bayes Classifier:**

- gives p_T estimation.

Ageing:

Very dependent of the MB1 (innermost DT), expected to be the more affected by ageing.

Efficiency over 95% for $p_T > 20 \text{ GeV}$. Decrease of 5% for the worst-case ageing scenario: non affected thanks to redundancy of the system.

• Measure ϕ for each hit and select a reference one. • Build $\Delta \phi$ with respect to reference hit. • Compare with precomputed patterns and most likely