

Status of the Mu2e experiment

S. Di Falco INFN Pisa on behalf of the Mu2e Collaboration

European Physical Society conference on high energy physics 2021

Online conference, July 26-30, 2021

The Mu2e experiment

A search for Charged Lepton Flavor Violation (CLFV)

via the coherent conversion:

 $\mu^{-} + AI \rightarrow e^{-} + AI$

at the Fermilab Muon Campus

The goal is to improve by **a factor 10**⁴ the world's best sensitivity (SINDRUM II*) on:

$$R_{\mu e} = \frac{\Gamma (\mu^- + N \rightarrow e^- + N)}{\Gamma (\mu^- + N \rightarrow \text{all captures})}$$

down to a Single Event Sensitivity of $3 \cdot 10^{-17}$ SM prediction is $< 10^{-49} \cdot 10^{-52.}$ Any observation \rightarrow clear evidence for New Physics

*W. Bertl et al., Eur.Phys.J. C47,337 (2006)

CLFV searches

Muon sector currently provides the most stringent limits to CLFV

Process	Current Limit	Next Generation exp
τ → μη	BR < 6.5 E-8	
$\tau \rightarrow \mu\gamma$	BR < 6.8 E-8	10 ⁻⁹ - 10 ⁻¹⁰ (Belle II)
τ → μμμ	BR < 3.2 E-8	
$\tau \rightarrow eee$	BR < 3.6 E-8	
K _L → eμ	BR < 4.7 E-12	
$K^* \rightarrow \pi^+ e^- \mu^+$	BR < 1.3 E-11	
B⁰ → eµ	BR < 7.8 E-8	
B ⁺ → K ⁺ eu	BR < 9.1 F-8	
μ⁺ → e⁺γ	BR < 4.2 E-13	10 ⁻¹⁴ (MEG)
μ⁺ → e⁺e⁺e⁻	BR < 1.0 E-12	10 ⁻¹⁶ (PSI)
µN → eN	R _{μe} < 7.0 E-13	10 ⁻¹⁷ (Mu2e, COMET)

"3 stars" discovery capability in many theoretical frameworks

Different sensibility to different processes makes the 3 experimental searches complementary

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B \to X_s \gamma\right)$	*	*	*	***	***	*	?
$A_{\rm 7,8}(B\to K^{\star}\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B\to K^{\scriptscriptstyle\bullet}\mu^+\mu^-)$	*	*	*	*	*	*	?
$B \to K^{(\star)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \nu$	*	*	*	*	*	***	***
$K_L \rightarrow \pi^0 \nu \nu$	*	*	*	*	*	***	***
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g - 2)_{\mu}$	***	***	**	***	***	*	?

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

W.Altmanshofer at al. arxiv 0909.1333v2

The muon beam line

<u>3 Superconducting Solenoids:</u>

Production Solenoid: *tungsten target*, graded field reflects low momentum particles downstream
 Transport Solenoid: select negative particles with the right momentum, antiproton absorber
 Detector Solenoid: Al stopping target, proton absorber, graded field to direct to detectors

The proton beam structure

The detectors region

μ

The stopping target

Acceptance for conversion electrons improved by magnetic gradient Minimum amount of material before momentum measurement (segmented target and straw tube tracker)

Constant field in the tracking volume

37 foils of Al
100 μm thick
75 mm radius
21 mm central hole radius

The Cosmic Ray Veto

About 1 cosmic event/day emulating a 105 MeV electron

Cosmic Ray Veto:

4 layers of scintillator counters covering Detector Solenoid and Lower Transport Solenoid

3 of 4 layers provides a veto efficiency >99.99%

The straw tube tracker

1,62 m

18 stations of 12 panels covering 120° each (stereo view)

Tracker not sensitive to particles with p_{τ} <80 MeV/c (beam flash and most of DIOs)

3,27 m

Tracker performances

The electromagnetic calorimeter

Geometry (acceptance optimized)

2 disks spaced by 70 cm inner radius: 37.4 cm outer radius: 66 cm

Active material: pure CsI crystals 674 crystals/disk 3.4x3.4x20 cm³

<u>Sensors:</u> Arrays of 6 SiPMs 2 arrays/crystal 14x20 mm² each

Readout electronics:

Preamplifiers on sensors back Voltage control and Waveform Digitizers in crates around disks

Calibration/monitoring system:

Fluorinert liquid in front of each disk Laser and electronic pulses <u>11</u>

Particle identification

Extrapolated track time (assuming electron mass) – calorimeter cluster time

Calorimeter cluster energy / track momentum

An ANN selection makes the cosmic muons background negligible wrt the cosmic electrons irriducible background

Mu2e run schedule

- Beam on target late 2024
- Run 1: 2025-2026
 - x1000 improvement over SINDRUM-II 90% CL limit
- PIP-II/LBNF shutdown scheduled for end of 2026
- Data-taking resumes early 2029
 - The goal is a x10000 improvement over SINDRUM-II: (90% CL)

Irreducible cosmic background

The TS region cannot be completely covered

The dominant cosmic background is due to muons entering through the TS hole and producing a delta ray electron when interacting with the TS material.

Cosmic background is the dominant background for CE search

Decay in orbit (DIO) background

The DIO spectrum falls as (E_{max}-E)⁵ close to the end point

Can be suppressed by the momentum window cut

Other main backgrounds

Antiproton background is suppressed by a set of passive absorbers

Radiative Pion Captures in the AI target producing photons converting in e⁺e⁻ pairs can be suppressed by a time window cut

Time and momentum cuts optimized to get the best sensitivity 14

Conclusion

- CLFV sensitivity in the muon sector is expected to be improved in the very next future by the experiments looking for μ→ ey, μ→ eee or μN→ eN. If a violation will be observed in any of these processes, it will be very important to have the complementary information from the other two to investigate the origin of the violation
- Mu2e will improve by 4 order of magnitudes the current world sensitivity on muon conversion to electron
- Prototypes test and simulation are confirming the design detector performances
- Construction of the beam line, solenoids and detectors is under way
- First run in 2025-2026 will allow to improve SINDRUM II limit by x1000

Backup

Mu2e status: detector hall

18

Mu2e status: beam line

M4 beamline completed up to the diagnostic absorber

Final focus installation is in progress

M4 beam line

Final focus: large quadrupoles 19

Mu2e status: transport solenoid

All coils

Italy)

produced at

AGS (Genova,

TS Coils at ASG

Fermilab Test Facility

<image>

Tsu cold mass and thermal shield

Mu2e status: production/detector solenoid

In production at General Atomics (Tupelo, US)

First DS module completed!

DS10 module

Production Target

PS1 coil

Mu2e status: tracker

Straws production almost completed 46% of panels assembled (estimated time for completion Nov 2022)

Panel assembly at U. of Minnesota

Panel vacuum test at Fermilab

Mu2e status: calorimeter

All SiPMs and crystals produced and qualified Radiation hard electronics tested, starting production

Csl crystals

Voltage control and Digitizer board

FEE boards + SiPM arrays

External disk and back plane ²³

Mu2e status: cosmic ray veto

CRV counter

Half of the modules produced

4 layer modules at U. of Virginia

Expected completion by the end of 2022

Extinction monitor

Validates the assumption of an extinction factor $<10^{-10}$

Stopping target monitor

Ge and LaBr detectors to detect the monochromatic X and γ rays produced by muon captures in Al with a statistical error <10%

Magnet

Target

Collimator

Collimator

30

Detector(s)

COMET Phase I

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

From Wu Chen's presentation at CLFV2019

COMET Phase II

From Wu Chen's presentation at CLFV2019

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

