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Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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Figure 1: The e�ciency mapped output of the NN versus the input variables for the events in signal region 2 for
four cases: (a) there is no injected signal; (b) there is an injected signal of mA = 3 TeV, and mB = 400 GeV and
mC = 80 GeV, (c) there is an injected signal of mA = 3 TeV, and mB = 200 GeV and mC = 200 GeV, and (d) there is
an injected signal of mA = 3 TeV, and mB = 400 GeV and mC = 400 GeV. The location of (mB,mC) for the given
injected signal is marked with a green ⇥. The injected cross section is just below the limit at low mB and mC from
the inclusive dijet search [101].

masses are varied, with widths set close to zero. These signals were simulated using P����� 8.2 [103–105]
with the A14 set of tuned parameters [106] and NNPDF 2.3 parton distribution function [107]. All samples
of simulated data were processed using the full ATLAS detector simulation [108] based on G����4 [109].
The amount of signal injected in all cases is about the same as, or less than, the level already excluded
by the all-inclusive dijet search [101]. In all cases, the low-e�ciency (signal-like) regions of the NN are
localized near the injected signal. Some signals are easier to find than others; the di�culty is set both by
the relative size of the signal and by the total number of events available for training in the signal vicinity.

After applying an event selection based on the NN trained on a particular signal region, the mJJ spectra are
fit with a parametric function. The entire mJJ spectrum between 1.8 and 8.2 TeV is fit with a binning of
100 GeV; however, a fit signal region and fit sideband region are defined for evaluating the quality of the fit.
The fit signal regions are defined as the mJJ signal regions the NN used for training, combined with the
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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FIG. 1. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled histogram) before and after
applying jet substructure cuts using the NN classifier output for the mJJ ' 3 TeV mass hypothesis. The dashed red lines
indicate the fit to the data points outside of the signal region, with the gray bands representing the fit uncertainties. The
top set of markers represent the raw dijet distribution with no cut applied, while the subsequent sets of markers have cuts
applied at thresholds with e�ciency of 10�1, 10�2, 2⇥ 10�3, and 2⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance signal has been injected
(right). The dashed lines correspond to the case where no substructure cut is applied, and the various solid lines correspond
to cuts on the classifier output with e�ciencies of 10�1, 10�2, and 2⇥ 10�3.

to a level of discovery. There are many other possibili-
ties for applying this technique directly to data, in any
case where the signal is expected to be localized in one
dimension. By naturally exploiting the power of modern
machine learning, we hope that this extended bump hunt
will help to expose new distance scales in nature on the
quest for BSM at the LHC and beyond.

The datasets and code used for the case study can be
found at Refs. [48, 49].
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FIG. 1. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled histogram) before and after
applying jet substructure cuts using the NN classifier output for the mJJ ' 3 TeV mass hypothesis. The dashed red lines
indicate the fit to the data points outside of the signal region, with the gray bands representing the fit uncertainties. The
top set of markers represent the raw dijet distribution with no cut applied, while the subsequent sets of markers have cuts
applied at thresholds with e�ciency of 10�1, 10�2, 2⇥ 10�3, and 2⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance signal has been injected
(right). The dashed lines correspond to the case where no substructure cut is applied, and the various solid lines correspond
to cuts on the classifier output with e�ciencies of 10�1, 10�2, and 2⇥ 10�3.
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case where the signal is expected to be localized in one
dimension. By naturally exploiting the power of modern
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11 Results

Figures 5 and 6 show the measured cross-sections as a function of jet transverse momentum, lepton-jet
balance and lepton-jet azimuthal correlations, which are compared to analytical calculations and predic-
tions obtained with event generators, respectively. The unfolding is performed simultaneously in four
dimensions and is unbinned, but the results are presented as four separate histograms to quantitatively
compare to predictions.
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Fig. 5: Measured cross-sections, normalized to the inclusive jet production cross section, as a function of the jet
transverse momentum, jet pseudorapidity, lepton-jet momentum balance, and lepton-jet azimuthal angle correla-
tion. Predictions obtained with the pQCD (corrected by hadronization effects, “NP”) are shown as well. Predictions
obtained with the TMD framework are shown for the qT/Q and Df cross-sections. At the bottom, the ratio be-
tween pQCD predictions and the data are shown (the TMD NLL0 calculations are not included). The gray bands
represent the total systematic uncertainty of the data; the bars represent the statistical uncertainty of the data, which
is typically smaller than the marker size. The color bands represent the uncertainty on the pQCD calculations.

The pjet
T cross-section is described within uncertainties by the NNLO calculation; the discrepancies with

2

prior spectrum t(0)j = Pr0(truth is j), IBU proceeds iter-
atively according to the equation:

t(n)
j =

X

i

Prn�1(truth is j | measure i) Pr(measure i)

=
X

i

Rijt
(n�1)
j

P
k Rikt(n�1)

k

⇥ mi, (2)

where n is the iteration number.
OmniFold uses machine learning to generalize Eq. (2)

to the unbinned, full phase space. A key concept for this
approach is the likelihood ratio:

L[(w, X), (w0, X 0)](x) =
p(w,X)(x)

p(w0,X0)(x)
, (3)

where p(w,X) is the probability density of x estimated
from empirical weights w and samples X. The function
L[(w, X), (w0, X 0)](x) can be approximated using a clas-
sifier trained to distinguish (w, X) from (w0, X 0). This
property has been successfully exploited using neural net-
works for full phase-space Monte Carlo reweighting and
parameter estimation [18, 22–26]. Here, we use neural
network classifiers to iteratively reweight the particle-
and detector-level Monte Carlo weights, resulting in an
unfolding procedure.

The OmniFold technique is illustrated in Fig. 1. In-
tuitively, synthetic detector-level events (“simulation”)
are reweighted to match experimental data (“data”), and
then the reweighted synthetic events, now evaluated at
particle-level (“generation”), are further reweighted to
estimate the true particle-level information (“truth”).
The starting point is a synthetic Monte Carlo dataset
composed of pairs (t, m), where each particle-level event
t is pushed through the detector simulation to obtain a
detector-level event m. Particle-level events have initial
weights ⌫0(t), and when t is pushed to m, these become
detector-level weights ⌫push

0 (m) = ⌫0(t). OmniFold it-
erates the following steps:

1. !n(m) = ⌫push
n�1 (m) L[(1, Data), (⌫push

n�1 , Sim.)](m),

2. ⌫n(t) = ⌫n�1(t) L[(!pull
n , Gen.), (⌫n�1, Gen.)](t).

The first step yields new detector-level weights !n(m),
which are pulled back to particle-level weights !pull

n (t) =
!n(m) using the same synthetic pairs (t, m). Note that
⌫push and !pull are not, strictly speaking, functions be-
cause of the multi-valued nature of the detector simula-
tion. The second step ensures that ⌫n is a valid weighting
function of the particle-level quantities.

Assuming ⌫0(t) = 1, in the first iteration Step 1 learns
!1(m) = pData(m)/pSim.(m), which is pulled back to the
particle-level weights !pull

1 (t). Step 2 simply converts

the per-instance weights !pull
1 (t) to a valid particle-level

weighting function ⌫1(t). After one iteration, the new
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FIG. 1. An illustration of OmniFold, applied to a set of syn-
thetic and natural data. As a first step, starting from prior
weights ⌫0, the detector-level synthetic data (“simulation”) is
reweighted to match the detector-level natural data (simply
“data”). These weights !1 are pulled back to induce weights
on the particle-level synthetic data (“generation”). As a sec-
ond step, the initial generation is reweighted to match the new
weighted generation. The resulting weights ⌫1 are pushed for-
ward to induce a new simulation, and the process is iterated.

induced truth is:

⌫1(t) pGen.(t) =

Z
dm0 pGen.|Sim.(t|m0) pData(m

0). (4)

This is a continuous version of IBU from Eq. (2), where
the sum has been promoted to a full phase-space inte-
gral. In fact, OmniFold (and IBU) are iterative strate-
gies that converge to the maximum likelihood estimate
of the true particle-level distribution [27–31], which we
discuss in detail in the Appendix. After n iterations, the
unfolded distribution is:

p(n)
unfolded(t) = ⌫n(t) pGen.(t). (5)

The unfolded result can be presented either as a set of
generated events {t} with weights {⌫n(t)} (and uncer-
tainties) or, more compactly, as the learned weighting
function ⌫n and instructions for sampling from pGen..

To demonstrate the versatility and power of Omni-
Fold, we perform a proof-of-concept study relevant for
the LHC. Specifically, we unfold the full radiation pat-
tern (i.e. full phase space) of jets, which are collimated
sprays of particles arising from the fragmentation and
hadronization of high-energy quarks and gluons. Jets
are an ideal environment in which to benchmark unfold-
ing techniques, since detector e↵ects often account for
a significant portion of the experimental measurement
uncertainties for many jet substructure observables [32].
With the radiation pattern unfolded, one can obtain the
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FIG. 1. The three histograms shows the result
before and after reweighting between two values of
TimeShower:alphaSvalue = ↵s on di↵erent 1D observables.
To quantify the quality of the reweighing, and to illustrate
one trained model can continuously reweight for any param-
eter, we show the �2/ndf for multiplicity as a function of ↵s

in the lower right plot for reweighting to ↵s = 0.1600. For
each value, we compare the �2 relative to ↵s = 0.1600 before
and after reweighting. Each �2 value is averaged over 10 runs
and the grey band marks the standard deviation, which is
consistent with �2/ndf ⇡ 1.

ing Eq. 3. As a first step, Table I presents the result of
a fit where the ‘data’ are the same as the nominal, but
with each parameter changed one at a time (each row is
a separate fit). To illustrate the sensitivity to the ran-
domness in the model initialization, each fit is performed
ten times. This variation could be reduced with a more
sophisticated neural network and/or more training data.
For each of these one-dimensional fits, the fitted value
is consistent with the target value within these statis-
tical fluctuations from initialization, which are 1 � 3%.
As TimeShower:alphaSvalue has a bigger impact on the
phase space, it is less sensitive to the initialization sta-
tistical fluctuations. For a fit with data, the statisti-
cal and systematic uncertainty could be determined with
toys and even profiled, as is standard for parameter fit-
ting.

TABLE I. Independent fit for simulation where one parameter
was changed at a time. The reported numbers are the mean
and standard deviation over 10 runs with di↵erent model ini-
tializations.

Parameter Target value Fit value

TimeShower:alphaSvalue 0.1600 0.1601± 0.0018

StringZ:aLund 0.8000 0.7980± 0.0257

StringFlav:probStoUD 0.2750 0.2754± 0.0065

FIG. 2. Ratio of histograms from nominal distribution to
sample generated with StringZ:aLund = 0.8 on the left
and StringFlav:probStoUD = 0.275 on the right. Both un-
weighted and weighted histograms ratios are shown. The gray
band indicates the statistical uncertainty from both the nom-
inal and variation sample. After reweighting, the ratio only
di↵ers from 1 within the statistical uncertainty.

As a next step, the top part of Table II shows the result
of a simultaneous fit to the three parameters. As with
the one-dimensional fit, the fitted values are all statisti-
cally consistent with the target values. Interestingly, the
sensitivity to the initialization statistical fluctuations is
about the same for the three-dimensional fit as for the
one-dimensional fits, providing confidence in the scal-
ing to more parameters. In practice, the fitting proce-
dure would be validated on a variety of simulations with
known parameters, as just described. An illustration of
the fit itself is shown in Fig. 3, where a two-dimensional
slice through the likelihood landscape is presented and
the fit execution demonstrated with markers and dashed
lines. The broadness of the loss in the StringZ:aLund di-
rection relative to the TimeShower:alphaSvalue one is a
reflection of the significantly smaller impact of fragmen-
tation function variations on the observable phase space
compared with modifications to the final state shower
strong coupling. After the validation, the model can be
deployed on data, where the parameters are unknown.
The lower part of Table II replicates this scenario, where
the Pythia parameters were blinded during the fit. This
closure test indicates that the method is robust to user-
bias.

The empirical results demonstrate that Dctr is ready
to be deployed. The discrete reweighting could be used
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FIG. 1. The three histograms shows the result
before and after reweighting between two values of
TimeShower:alphaSvalue = ↵s on di↵erent 1D observables.
To quantify the quality of the reweighing, and to illustrate
one trained model can continuously reweight for any param-
eter, we show the �2/ndf for multiplicity as a function of ↵s

in the lower right plot for reweighting to ↵s = 0.1600. For
each value, we compare the �2 relative to ↵s = 0.1600 before
and after reweighting. Each �2 value is averaged over 10 runs
and the grey band marks the standard deviation, which is
consistent with �2/ndf ⇡ 1.

ing Eq. 3. As a first step, Table I presents the result of
a fit where the ‘data’ are the same as the nominal, but
with each parameter changed one at a time (each row is
a separate fit). To illustrate the sensitivity to the ran-
domness in the model initialization, each fit is performed
ten times. This variation could be reduced with a more
sophisticated neural network and/or more training data.
For each of these one-dimensional fits, the fitted value
is consistent with the target value within these statis-
tical fluctuations from initialization, which are 1 � 3%.
As TimeShower:alphaSvalue has a bigger impact on the
phase space, it is less sensitive to the initialization sta-
tistical fluctuations. For a fit with data, the statisti-
cal and systematic uncertainty could be determined with
toys and even profiled, as is standard for parameter fit-
ting.

TABLE I. Independent fit for simulation where one parameter
was changed at a time. The reported numbers are the mean
and standard deviation over 10 runs with di↵erent model ini-
tializations.

Parameter Target value Fit value

TimeShower:alphaSvalue 0.1600 0.1601± 0.0018

StringZ:aLund 0.8000 0.7980± 0.0257

StringFlav:probStoUD 0.2750 0.2754± 0.0065

FIG. 2. Ratio of histograms from nominal distribution to
sample generated with StringZ:aLund = 0.8 on the left
and StringFlav:probStoUD = 0.275 on the right. Both un-
weighted and weighted histograms ratios are shown. The gray
band indicates the statistical uncertainty from both the nom-
inal and variation sample. After reweighting, the ratio only
di↵ers from 1 within the statistical uncertainty.

As a next step, the top part of Table II shows the result
of a simultaneous fit to the three parameters. As with
the one-dimensional fit, the fitted values are all statisti-
cally consistent with the target values. Interestingly, the
sensitivity to the initialization statistical fluctuations is
about the same for the three-dimensional fit as for the
one-dimensional fits, providing confidence in the scal-
ing to more parameters. In practice, the fitting proce-
dure would be validated on a variety of simulations with
known parameters, as just described. An illustration of
the fit itself is shown in Fig. 3, where a two-dimensional
slice through the likelihood landscape is presented and
the fit execution demonstrated with markers and dashed
lines. The broadness of the loss in the StringZ:aLund di-
rection relative to the TimeShower:alphaSvalue one is a
reflection of the significantly smaller impact of fragmen-
tation function variations on the observable phase space
compared with modifications to the final state shower
strong coupling. After the validation, the model can be
deployed on data, where the parameters are unknown.
The lower part of Table II replicates this scenario, where
the Pythia parameters were blinded during the fit. This
closure test indicates that the method is robust to user-
bias.

The empirical results demonstrate that Dctr is ready
to be deployed. The discrete reweighting could be used
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Abstract: Di↵erential cross section measurements are a core component of the collider

physics research program. Machine learning tools have empowered a qualitatively new

way to perform these analyses whereby the data are unbinned and possibly in high- (and

variable-)dimensions. There is currently no community standard for publishing unbinned

data. The purpose of this note is to present a proposal for presenting unbinned results,

which can hopefully form the basis for a community standard to allow for integration into

standard analysis workflows.
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11 Results

Figures 5 and 6 show the measured cross-sections as a function of jet transverse momentum, lepton-jet
balance and lepton-jet azimuthal correlations, which are compared to analytical calculations and predic-
tions obtained with event generators, respectively. The unfolding is performed simultaneously in four
dimensions and is unbinned, but the results are presented as four separate histograms to quantitatively
compare to predictions.
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Fig. 5: Measured cross-sections, normalized to the inclusive jet production cross section, as a function of the jet
transverse momentum, jet pseudorapidity, lepton-jet momentum balance, and lepton-jet azimuthal angle correla-
tion. Predictions obtained with the pQCD (corrected by hadronization effects, “NP”) are shown as well. Predictions
obtained with the TMD framework are shown for the qT/Q and Df cross-sections. At the bottom, the ratio be-
tween pQCD predictions and the data are shown (the TMD NLL0 calculations are not included). The gray bands
represent the total systematic uncertainty of the data; the bars represent the statistical uncertainty of the data, which
is typically smaller than the marker size. The color bands represent the uncertainty on the pQCD calculations.

The pjet
T cross-section is described within uncertainties by the NNLO calculation; the discrepancies with

multidimensional 
unfolding for electron-jet 
azimuthal correlations

As a community, we are preparing for a 
future in which bins are determined 

after the fact and not before !

https://indico.in2p3.fr/event/24331/contributions/95962/attachments/65000/90366/LesHouches2021_Nachman_discussion.pdf
https://www-h1.desy.de/psfiles/confpap/DIS2021/H1prelim-21-031.pdf
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