Contribution submission to the conference Dortmund 2021

Prospects of fast timing detectors for particle identification on the future Higgs factories — •BOHDAN DUDAR^{1,2}, RÉMI ETE¹, and JENNY LIST¹ — ¹DESY, Hamburg, Germany — ²Hamburg University, Germany

Future e^+e^- colliders are excellent tools to probe fundamental physics beyond Standard Model via Higgs and electroweak precision measurements.

Modern silicon detectors are able to measure time-of-arrival with high precision of O(10 ps). This can be used to measure the time-of-flight (TOF) of the particles and improve their identification.

We develop reconstruction and calibration algorithms based on TOF information to separate π^{\pm} , K^{\pm} , p, \bar{p} particles in future Higgs factory detectors. Furthermore, we study how to implement fast timing silicon layers in the tracking and/or calorimeter systems, in order to derive requirements on the time resolution. As an example case, the ILD detector concept is studied.

The K^{\pm} mass measurement is a simple benchmark to test the performance of TOF algorithm. A precision at the level of 10 keV can be expected, which would significantly improve the knowledge of the K^{\pm} mass.

Part:	Т
Туре:	Vortrag;Talk
Topic:	3.12 Experimentelle Methoden (allg.);
	3.12 Experimental Methods (general)
Email:	bohdan.dudar@desy.de