Finite Impulses Response Filters for Compton Edge reconstruction

Beate Heinemann, Ruth Jacobs, Jenny List

LUXE weekly meeting 14th October 2020

Reminder: Why we are interested in the kink

- Gaussian pulse: overlay of different true ξ leads to dramatic washing-out of edges
- final analysis should be a template fit (template of different ξ bins) fit to the spectrum

For the CDR propose simple approach:

- instead of differentiation, try to find the "kink" of the edge
- for low enough ξ (high w0) , this position corresponds to ξ_{max}

DESY.

Finite Impulses Response Filter (FIR)

Before: Simple Differentiation for Edge finding

- get electron x distribution
- calculate slope bin-by-bin
 - \rightarrow bin with max. slope = edge
- susceptible to statistical fluctuations!

method used by J. List et. al.

Finite Impulses Response Filter

- edge-like features in function g(x) can be identified by maxima in the convolution R(x)=h(x)*g(x) where h(x) is a matched filter
- R(x) is called the Response
- we have discrete data points $\mathbf{x}=(x_0,...,x_i)$, need discretized Response $R_d(i)$

$$R_d(i) = \sum_{k=-N}^N h_d(k) \cdot g_d(i-k)$$

- different filters h_d available, optimal choice depends on the function g(x)
- · Used here: First derivative of a Gaussian (FDOG)

$$h_d(k) = -k \exp(-\frac{k^2}{2\sigma^2})$$
 for $-N \le k \le N$

FIR approximates first derivative

DESY. — thanks to filters more robust against statistical fluctuations!

Finite Impulses Response Filter (FIR)

How to estimate uncertainties?

- variations in spectrum lead to variations in the response
 - → uncertainties on determined edge and upper kink location

Prescription:

for each independent source of uncertainty...

- 1) Obtain electron energy spectrum varied by $\pm 1\sigma$
- 2) Run the FIR on the varied spectrum, get new response, get L' and K_{up}'
- 3) Calculate ΔL = L'-L_{Nom} , ΔK_{up} = K_{up}'-K_{up,Nom}

finally add all Δ up in quadrature to get total uncertainty

Which uncertainties enter?

1) Statistical uncertainty on electron rate:

- \sqrt{N} of the number of measured electrons
- Caveat: Need to agree on size of our dataset! so far I did for 3600 BX (1h data-taking at 1Hz)

How to estimate?

Throw toy experiments - get a new histogram with

gaussian distributed random numbers ($\mu_i = N_{nom,i}$, $\sigma_i = \sqrt{N_{nom,i}}$ where $N_{nom,i} = nominal$ content of bin i)

2) Systematic uncertainties:

- B-field uncertainty (Energy scale!)
- Detector-related uncertainties: (i.e. for Cerenkov)
 - photon statistics (<1%)
 - detector non-linearity (~1-2%)
 - calibration uncertainty (~1-2%)
 - background uncertainty (?)

How to estimate? Dipole field: E is proportional to B Other uncertainties (except for Bkg unc.) affect mainly the total norm!

Impact of Uncertainties

Impact of Uncertainties

Summary

- study impact of uncertainties on edge-finding with finite impules response filters
- statistical uncertainties: evaluate using toy MC
 → very small uncertainties for 1h data-taking
- possible systematics: Dipole field uncertainty
 - photon statistics
 - count rate uncertainty
- assume 5% total norm and energy scale uncertainties
 → reasonable?