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A Definition

“Giving computers the ability to learn without explicitly programming
them” A. Samuel (1959).

s fitting a straight line machine learning ?
Models that have enough capacity to define its own internal
representation of the data to accomplish a task : learning from data.

In practice : a statistical method that can extract information from the
data, not obviously apparent to an observer.

>Most approach will involve a mathematical model and a cost/
reward function that needs to be optimized.

> The more domain knowledge is incorporated, the better.
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Supervised Learning

- Given a dataset of samples, a subset of features is
qualified as target, and the rest as input

- Find a mapping from input to target

- The mapping should generalize to any extension
of the given dataset, provided it is generated from
the same mechanism

dataset= {(x;, y;)}

A

find function f s.t. f(x,)=y,

g0

80

70

- Finite set of target values : Fo| W
> Classification

60

- Target is a continuous variable : . . , .
>Regression o |
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Unsupervised Learning

- Given a dataset of samples, but there is no subset of
feature that one would like to predict

- Find mapping of the samples to a lower dimension manifold

- The mapping should generalize to any extension of the
given dataset, provided it is generated from the same
mechanism

dataset={(x;)}

A

find f st f(x)=p, .

- Manifold is a finite set 20
> Clusterization
- Manifold is a lower dimension manifold :
>Dimensionality reduction,
density estimator

Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant



Reinforcement Learning

- Given an environment with multiple states, given a
reward upon action being taken over a state

- Find an action policy to drive the environment
toward maximum cumulative reward

St+ 1= EnV(St’ at)
r.= Rew(s,,a,)

_
T
M(als)= P(A=alS=s)
find T s.t. z r, IS maximum
4
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Overview
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Many optimization methods adapted to the various type of the
dataset, model, objective.
Gradient descent, evolutionary algorithms, ...
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(Some) Machine Learning Methods

scikit-learn

algorithm cheat-sheet

regression

Lasso
SGD .
ElasticNet
Regressor SVR(kernel="rbf")

YES EnsembleRegressors
|

classification
: WORKING

Ensemble
| o
KNelgl“bors m ore
Classifier b
NO
NO .

«
YES >50
NOT YES samples
Text SRR . <100K ‘
\_j W samples i,
NO

predicting a !
ves . catego
YES ’ g oy
NOT do you have ] 3
Spectral WORKING labeled No
Clustering = m data
number of
VES b categories
. known
clustering V
<10K
samples

NOT
WORKING

NO,

few features Nor
should be WORKING

important
RidgeRegression

NO

_ YES
predicting a
quantity
NO

NO

<10K

samples

Spectral
bedding

oT TN LLE
WORKING

VBGMM dlmen31opa11ty
reduction

: kernel
tough g/ predicting approximation

There are a lot of methods out there.
Focusing on artificial neural networks in this lecture.
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http://scikit-learn.org/stable/tutorial/index.html

Artificial Neural Network

- Biology inspired analytical model, but not bio-mimetic

- Booming in recent decade thanks to large dataset, increased computational
power and theoretical novelties

- Origin tied to logistic regression with change of data representation

- Part of any “deep learning” model nowadays

- Usually large number of parameters trained with stochastic gradient descent

Input Hidden Output
layer layer layer

h=4¢(Ux+ v)
o(x)=w h+ b
1

= ply=Tix)=0(o(x))=——

///
loss == y;In(p)+ (1= y)In(1- p)) %
\x

—o0(x)

N
7
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Gradient Descent Optimization

A
Initial

J(w) ! Gradient
/
/
'

7

/}
/)
l . .
LA Global cost minimum

=L I (%)

>

w

- For a differentiable loss function f, the first Taylor expansion gives

S (x+€)=f(x)+eV f(x)
- The direction to locally maximally decrease the function value is anti-
collinear to the gradient

e=-yYV f(x)

. Amplltude of the stepY to be taken with care to prevent overshootlng
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: Input Cell

@ Backfed Input Cell

E Noisy Input Cell

. Hidden Cell

. Probablistic Hidden Cell
@ spiking Hidden Cell
‘ Capsule Cell

. Output Cell

© Matchinput Output Cell
. Recurrent Cell

. Memory Cell

' Gated Memory Cell

" Kernel

QO Convolution or Pool

Markov Chain (MC) Hopfield Network (HN)  Boltzmann Machine (BM)  Restricted BM (RBM)

Neural Net Architectures

A mostly complete chart of

Neural Networks

©2019 Fjodor van Veen & Stefan Leijnen  asimovinstitute.org
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Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

%

NN N
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Differentiable Neural Computer (DNC) Neural Turing Machine (NTM)
P ) ) [ P

Attention Network (AN)
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Plasticity of Neural Networks

* Models can become a complex assembly of
=\/arious layers of neurons
= Branches from various heterogenous inputs
= Branches to various complementary objectives
= Analytical components

= Non-analytical re-indexing
- ...

* Not covering the uber-structures tailored for various end-goal tasks
= Multi-input, Multi-objectives models
= Auto-encoders (AE), variational auto-encoders (VAE)
= Generative adversarial networks (GAN)
= Density estimators (DE)

=Normalizing flows (NF)
- ..

* Focusing in this lecture on the meta-structures that can be used to
compose a more complete and complex model

SeE

64, \ <]
Vs D .
E A @ AIND
= 17 R 2\
2\ if S ]
IS
S2iTEs Os

PP Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant

13



Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant

14



Feed Forward Networks

Input Hidden Output
layer layer layer
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Simplest structure.
All-to-all connection between neurons of neighboring layers.
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Going Deep

Input Hidden Output
layer layer layer
m
W\, E
DEPTH —
£ =
()

Kolmogorov’s, and universal approximate theorems push
towards wide and deep densely connected networks.
Depth helps with decomposition.

Width helps with approximation.

UH Ve
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Curse of Dimensionality

- Fully connected layers require a large number of parameters
N',=N, <N .+N,

input node node

- Lots of a capacity in this kind of models

- Convergence of models with millions/billions of parameters
can be hard numerically

- Computing intensive in training and inference

- Hashing and pruning studies showed lots of redundancies :
not all weights are necessary

- Weight sharing helps reducing dimensionality
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Low Level Feature Exploitation
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Searching for exotic Particles in High-Energy Physics
with Deep Learning

Provided enough training data is available,
deeper models act as feature extraction from low-level information

. . . (¢
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Multi-category Classification
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Search for ttH production in the H-to-bb decay channel

with leptonic tt decays

Data / Pred.

CMS Preliminary 35.9 fb' (13 TeV)
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Regular analysis fit categories sub-divided using
DNN output nodes for added sensitivity.
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https://cds.cern.ch/record/2308267

Take Home Message
Dense models are the first ones to try out.
Can help in simple classification, from low level info.

Plagued with too many parameters.

I -

Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant



Quantum Derivatives

quantum circuit

Objective based on quantum measurement.
Parameters of a quantum circuits as weights.
Trainable circuits for quantum machine learning.

Quantum Machine Learning
Quantum Machine Learning in High Energy Physics
Quantum Machine Learning Models are Kernel Methods

- | i (o
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https://www.ibm.com/quantum-computing/
https://arxiv.org/abs/1611.09347
https://arxiv.org/abs/2005.08582
https://arxiv.org/abs/2101.11020

Convolutional Layers

UH
| | | 4 [ 22
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Translational Invariance

Same object can in at different place in images.
Learning of dense model would have to happen at all locations.
Tremendous overhead for model training.

Inductive bias: translation invariance.
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Convolutional Layer

- Smaller dense network defined as filter
- Filter applied as stencil code / patch
Nl = (Nz{nput/Sﬁcernel)x (Sicernelx Ni‘ilter-l- Nlﬁlter)

par
- Filter parameters are shared

- Total Number of parameters is dramatically reduced
- Available in 1D, 2D and 3D

A

R NN
W/({/ J/// 2D convolution

kernel size = (3x3), 1 filter

\
1D convolution, kernel size = 7, 1 filter
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Pooling

- Convolutional layer barely reduce the layer size, usually followed by
a dense layer (back to large numbers of parameters)

- Not all neighboring filters will “fire” consequently

- Maxpooling is collecting the maximum activity within a region

- Non-Analytical re-indexing, but gradients can flow to train the filter

5 9 -1 7 » 1 0 > 5 9

Input data Selected indices Layer result

1D Maxpooling
Pooling size = 2

2D Maxpooling

114 a]| 5|6 Pooling size = (2x2)
3 9 2 3 2 3 1 9 5
8 1 6 0 7 0 0 8 6

0 3 2 1 1

Input data Selected indices Layer result

& /A
N )
o 2 5
O ¥
— |
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https://software.intel.com
https://software.intel.com

Stacked Convolution
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Numerical Data-driven

cock
9[qey Suruurp

2108 A192013

Conv 1: Edge+Blob Con exture Conv 5: Objecf Parts Fc8: Object Classes
Early convolution layer capture local information.

Late convolution layer capture global information.
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Highway Connection

- Stacked layers distill information at consecutive scales
- Highway network controls how much information from
previous layer needs to move forward as input to the next

Highway networks

output: y=T@xX)OHx)+ (1 -T(x))Ox

input: x | linguistic | linguistic
: specif%cation : specifapation
R feedforward I feedforward
jintuiuints Sieisteiuiy | e I y | I
i | feedforward | | highway| |[highway| |highway | highway
! : : block block block : block
I I 7/
1| feedforward |1 Y ’ T I° T T
: ! gate T(x) | .’ . d . . . . | ) '
L l,- highway| |highway| |highway | highway
A block block block I block
1 0 ¥ ¥ ¥ |
B RO feedfor| |feedfor| |[feedfor | y
X e | ward ward ward | feedforward
: MGC FO BAP : MGC FO  BAP
| |

multi-stream single-stream
highway block highway network highway network

UH
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https://arxiv.org/abs/1505.00387

Skip Connections

- Stacked convolution layers distill information at consecutive scales
- Several ways of conserving the initial information from input

Highway networks

----------------

|
. |
1
: orward : +
K Zmp—— ! gate T(x)
H(x)
-1
X

S@) =) TE)+i-(1-T(4)))

Deep Residual Learning for Image
Recognition

X

weight layer

F(x) l relu

weight layer

identity
X

relu

S(i) =)+

Densely Connected Convolution
Networks

Dense Block 1
> O 0 ve vO vO >

fii) = f( klil(ik))

UH
| | | 4 [ 28
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Residual Connection

- Stacked layers distill information at consecutive scales
- Residual connection carries the input other to the output,
dimensionality allowing

S(i) =)+
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Deep Residual Learning for Image
Recognition
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https://arxiv.org/abs/1512.03385

Dense Connection

- Stacked layers distill information at consecutive scales
- dense-net provides the concatenation of all previous layer input to
the next layer

Sf(@) = f kliz(ik))

Densely Connected Convolutio
Networks



https://arxiv.org/abs/1608.06993

Image Representation
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Deep-learning top taggers or the end of QCD?

Jet-Images — Deep learning edition :
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- J

Calorimeter signal are image-like.
Projection of reconstructed particle properties onto images possible.
Potential loss of information during projection.
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Take Home Message

The Swiss-knife of image processing.
Translation invariance only.

Other invariance with model variants.
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Equivariant Derivatives
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Equivariant Derivatives
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Lorentz group Equivariant networks
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Natural Language Processing

Topics Documents Topic proportions & assignments

gene 0.04
dna 0.02

genetic 0.01 Seeking Life’s Bare (Genetic) Necessities

c COLD SPRING HARBOR, NEW YORK—  “are not all thar far .m.nm" especially in
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J survive! Last week at the genome meeling nome, notes Siv Anderssor <TI0
here,™ two genome researchers with radically Lm\ ersity in Swirisws ~-
different approaches presented complemen- | 800 T. but coming up with a co
life 0.02 tary views of the basic genes needed for life! ™ sus answer may be more than just a T
evolve 0.01 One research team, using computer analy numbers '™ jicularly more and

ses to compare known genomes, concluded  more genomes are g g ped

organism 0.61 that ln lav'siorganisms can be sustained with sequenced. lt may be a way of organizime

o just 250 genes, and that [hL earliest life forms  any newly sequenced genome,” explains 4—_'__
required a mere 128 genes. The  _— Arcady A\lwl)cgl‘m. a c m;'.|: itional mo
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brain 0.04 job—but that anything short S5 Coes n genes 2
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> 233 “,
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1 o et ; 256 minimal 128 )
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* Genome Mapping and Sequenc- —

ing. Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-

May 8 to 12. mate of the minimum modern and ancient genomes.

data 0.02 R, R, .
number 0 02 SCIENCE e VOL. 272 = 24 MAY 1996

computer 0.01 b

/

Words have a meaning of their own
Order of the words contains additional information
Natural language represented as an ordered sequence of variable size

UH
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http://doi.acm.org/10.1145/2133806.2133826

Recurrent Neural Network

- Sequential (text) of temporal (voice) data contains information in
their structure

- Model that can naturally accommodate for variable sized input
- Characterized by an hidden state carried over steps

O-

Ot—l 0 Ot+1
T Y ¥
S S
SO:} : %% Ot 1 — Ot " O t+1W
Unfold T T
U U U U
X x x X

s=tanh(U x+ W s,_+b,)
=0(Vs+b,)
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Long Short Term Memory Cell

- LSTM revolutionized text processing in the late 90s
. Carries around a cell state (C,) and hidden state (h,)

- Computationally expensive
Forget gate @
Input gate
i [h o, L
f=0(W  c+b,) A

i=0(W.c+b)
C=tanh (W .c,+ b,
Ct= .fl‘* Cl‘—1+ it*'Cl‘

0=0(W,c+b,)

h=o0,xtanh(C))

Control gate

Long Short-Term Memory

Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://dl.acm.org/doi/10.1162/neco.1997.9.8.1735

Gated Recurrent Unit

- GRU simplifies the computation from LSTM
-+ Only hidden state

C,= [ht— 1> xt]
z=0(W.c+b,)
r=0(W,c+b,)

h=tanh(W,[rxh,_,,x,+b,)
h=(1=z)«h_+zxh,

Learning Phrase Representations using RNN Encode-Decoder for
Statistical Machine Translartion
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https://arxiv.org/abs/1406.1078
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Quasi-Recurrent Models

- QRNN takes advantages from CNN and RNN
- More efficient, accurate on long sequences.

LSTM CNN QRNN
¥ ¥ ¥
Linear h Convolution # Convolution #
LsTW/Linear —{ -+ - | Max-Pool N N fo-Pool >

Linear # Convolution

LsTW/Linear —{ -+ - |~ Max-Pool

v v v

S

\/

Convolution #

fo-Pool >
Y Y v

Quasi-Recurrent Neural Networks
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https://arxiv.org/abs/1611.01576

Challenge in Natural Ordering

Tprojections activities

(activities x weights) f’/ = vectors of values Text have natural

order. RNN/LSTM can
A > i . . u correlate the
information to internal
; i : : : x representation
the cat sat on the mat

There is underlying order
In collision events.
Smeared through timing
resolution. No natural
order in observable

= Learn how to sort

UH
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Learn How

Recurrent Neural Networks (RNNSs):
-Long Short-Term Memory (LSTM)
-Gated Recurrent Unit (GRU)

En D D D
M 1= Q= o o e
N N L) -
I{-.; (—.? Finite I;ml?edding ’ ‘
L LI PPy UL LA (L e L
- ' 1 1  J LJ UJ
. Xl X2 . . . Xn
Decoder RNN
’-TT—-I r"? Softm;x Prédictions
|| PPms L LA
.5: ted SI ted ! I
Xl orte X2 orte . XSorted

Classification RNN

To Sort

e Custom:

R=W1

Eq

En

+ W2

D,

Dy,

Where Wy, W5 are trainable (nzn) matricies

e Pointer Networks

J

Memory Intensive!

Sorting and “soft” sorting models can be
concurrently trained with recurrent networks.
Expensive and tricky to train.
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Attention Mechanism

First introduced in natural language translation.
Provides contextual information where only local information is available.
Concept has been derived to other architectures.

X, X X Xr

Neural Machine Translation by Jointly
Learning to Align and Translate

Decoder

T

f

—

addition

000 -

multiplication

multiplication

score
— @

|

I

multiplication

score
=

|

multiplication

v‘l 4 ._| 3 '—‘ .h‘|
softmax sofmax softmax softimax
I | I I

score
W

hidden state

Q?Q

0?0
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Sequence Representation

\_

Unrolled RNN

Fully Connected

+
SoftMax
Sdo
| o] | en| | = Z
- T8 (2|2 |E] |2
pT ‘
Merge = [E] [ )
AR

\__ordercdivisdol __/ yet

B-Jet with Recurrent Neural Networks

~

J

\_

% 7 -

7N 7N
AR AN VAN
?/"\ 1 T T

QCD-Aware Recursive Neural Networks for Jet Physics.

7N

J

Somehow arbitrary choice on ordering with sequence representation.
Physics-inspired ordering as inductive bias.

Ordering can be learned too somehow.
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Take Home Message

The Swiss-knife of natural language processing.
Good with variable size input.

Ordering might be an issue.

UH
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Spiking Derivatives

Spiking Neural Networks are closer to the e
actual biological brain T
Adapted to temporal data L
Hardware implementation with low power .
consumption (RIS

Usually trained using evolutionary algorithms
Demonstrated to be economical models

Training Method Back-propagation

Native Input Types Images/Arrays of values

Large (many layers, many neurons
and synapses per layer)

Processing

Abilities Good for spatial

Performance Well understood and state-of-the-art

Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant

\_ Spike reception: EPSP )

Not well established (here, genetic
algorithms)

Spikes

Relatively small (fewer neurons and
sparser synaptic connections)

Good for temporal

Not well understood

U-H
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Forewords on Graph

A B C D E
r )

@) B Al0O 1 1 0 O
G ’B 0 0 0 1 1

cfo o o 1 0

é} 3 D|1 0 0 1 1
E{0 0 0 0 O

A graph is composed of
- Nodes that can be represented as a vector.
- Edges that can be represented with the adjacency matrix.

> Flowing of information using matrix operations.
>With machine learning on graphs, edges and nodes might
acquire latent representations.
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Graph Representation

@

Jet

Lepton Jet

MET

Hits in tracking detector Objects in an event

Hits in calorimeter detector Object sub-structure in an event

Graph Neural Networks in Particle Physics

Heterogenous data fits well in graph/set representation.
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https://arxiv.org/abs/2007.13681

The two Infinite

Reminder: Neural networks can take many forms. Any
analytical functions with trainable parameter can serve

as neural networks.

Graph Neural Networks, operating on graph-like data is
sitting in between meta-structure and uber-structure.

Quite fertile ground for innovation. Challenging to cover
all possible architectures.

Covering below some of the essential concepts and
features.

Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant
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Graph Convolutional Network

Hidden layer Hidden layer
s h ( )

Input v e v e Output
N . (o] e

RelLU o ? ReLU

T e S| gD = ([9—% AD~3 H<Z>W<Z>)

~ ~

A=A+ Iy DZZ:ZJAZJ

Semi-Supervised Classification with Graph Convolutional
Networks

Fixed graph connectivity and adjacency matrix (A).
Make us of spectral graph theory.
Update rule based on adjacency matrix and learnable parameters (W).
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Message Passing

[r
K fr
: fr

. . I I I I Node Message Passing State update Message Message
dddddd ing Passing & Passing &
ttttt State
' E [Dex Nej update update
dlZ

m
3 dyy
B 2p xNg . m® s 5O
dyy

C (psDy

OUTPUT [P+
o HE- W
E

N i
N_l o], ( )( )
mjt-r: : (ff((i\,jﬁ%f) O [ ( ) BB

ht GRU(ht 1 Zm ) fo To E[D Noj

~ ke Probing stop pair production at the LHC with
N r | M P |n f r Ph | No: # of constituents dc, fo, f RRL2P
eural Message Passing for Jet Physics N et edaes expressed as  SEE graph networks
DE:—size of intérnal rep?esentations dense neural 5‘?3
Do: size of post-interaction internal representation networks O

JEDI-Net: a jet identification algorithm
based on interaction networks

Information constructed on nodes is propagated to connected nodes.
Multiple ways of achieving message passing concept.

. . . (¢
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Dynamic Graph CNN (DGCNN)

c. 000000

x @ .\ v @ €. Ciis .\
) e
HEENENEN \'/ - ‘./‘ ’
X X. 9 4
he : RF xRF — RF x;= [ he(xix))
Ji(i,J)€E

Dynamic Graph CNN for Learning on Point Clouds

Convolutional-type edge representation model.
Representation aggregation mechanism for node update.
Dynamical connectivity as k-NN in latent representation.

Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant
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Graph Attention

encoding yzj — (Z‘Z — sz])
attention
Xt Xi coefficients Cij — LeakyReLU(h(x;, 9) —|— h(y:;j, 9))
W
@)
% Softrnax>’ &Zj _ €§Up(czj)
® ZkENq; exp(cik)
T = f( Z O‘ijyfgj)
7€N;

GAPNet: Graph Attention Based Point Neural Network for
exploiting Local Feature of Point Cloud

Graph connectivity as k-NN in node representation.
Edge features as node-feature difference.

Attention coefficients normalized over neighbors (c~a).
Multi-nead mechanism: stabilization by ensembling.
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Shared Operations

a )
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https://tkipf.github.io/graph-convolutional-networks/
https://imgur.com/gallery/AIFHqe9

Graph Connectivity

« “Sets” come with no connectivity at all.

* Fully connected graphs has the most information flow,
though can become computationally prohibitive.

 GNN can be made tractable through sparsification.
* Fixed/dynamic connectivity from input/latent space.

* Dynamic connedctivity is only re-indexing, and let the
gradients flow (similarly to maxpooling).

* Risk of dynamic connectivity from latent space to not have
the adequate gradient flow to train the latent space. Random
initialization or additional elements required.

* Risk of having heavy algorithms in dynamic edge definition.

Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant

56



Graph Neural Networks Formalism

Relational inductive biases, deep learning, and
graph networks

Graph attributes u — — u’ Updated attributes

N

N\

Edge attributes E —

Node attributes — /' Updated attributes

— I’ Updated attributes

Edge block Node block Global block

Lots of possibilities to operate on a graph.
Most available architectures can be expressed with ® and p.

Readily software:
(TF)
(Torch)
(JAX)

(Py)

Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant Etl‘ L
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https://github.com/deepmind/graph_nets
https://pytorch-geometric.readthedocs.io/en/latest/
https://jraph.readthedocs.io/en/latest/
https://docs.dgl.ai

Pile-Up Mitigation

1 [= | - Locally connected graph of

S S I} S reconstructed particle flow candidates
= |2 |3 i - Gated graph neural network (GGNN)
O © © O-o to evolve node representations

- per-particle pile-up classification
Pileup mitigation at the Large Hadron Collider with Graph extract for neutrals
Neural Networks

Jet mass resolution, Apy = 80 ROC curve, npy =80
6 T T v T v T T

S 1.00 =
- —&— PUPPI| + CHS o) -
QO ©
£ SoftKiller + CHS ] o 0.95
= 5t —#— PUPPIML + CHS 4 >
—_— 4 [ —
> i 3
< ] 80.90
£ 4 1 = :
I ! Foss|
o ] [
g ] i
S 3 1 0.80 [
v 4 L
§, : 0.75 ;
o 2 - . ] O
) d ] [ pr + CHS, auc=92.3%
. . < 0.70 0 ——- PUPPI weight + CHS, auc=93.9% |
,’ Fully connected + CHS, auc=94.8% 1
1 0.65 | = ° .
Antikt, R=0.7 | i GRU + CHS, auc=94.8 A;o
o ) ) ) ) ) | ) ] h —— GGNN + CHS, auc=96.1% ]
0 25 50 75 100 125 150 175 200 0.60 ! . : .
0.0 0.1 0.2 0.3 0.4 0.5

Jet mass / GeV .
False positive rate
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https://arxiv.org/abs/1810.07988

Particle Flow Reconstruction

" . . " w1010 I T L L | ’ I (/)1010 T T T I T
MLPF: Efficient Machine-Learned Particle-Flow : Charged hadrons : Neutral hadrons
. . Rule-based PF Rule-based PF
Reconstruction Using Graph Neural Networks & 108l = p=—o001, 0=021 < qoef- ™7 4=003, 0035
MLPF MLPF
p=0.03, 0=0.14 p=0.05 0=0.32
Event as input set Event as graph Transformed inputs 10°)- | 108 |- -~ .
X=lxl X=ixhA=4 H = {h;} A
104} 104 J‘ Kv =
® 9 Graph building Message passing \
102|- 102 e ]
.= o— [T - -ﬁ .
F(X|w) = A CX.A|w) = H . ot
m pr resolution, (pr - pr)/Pr E resolution, (E - E)/E
1010 T T T T T T T T T T T T T T T T 1010 T W T T T T T T [ T T T T T ] T T
, , l é | Clharged hadrons | é Neutral hadrons
Targetset Y = y; Output set YV’ = {y/} :“_, — I;(lile_-l(a)e-lgg’d PE E ol — ljile_-t()fg;d P |
Decoding 10° MLPF 8 MLPF
p=0.00, 0=0.25 p=-0.01, 0=0.06
Elementwise loss L(y;, y;) elomentwise 18| 7 |
classification & regression FFN 108 f‘w . :
—_— I 1 ; ‘
9()(1, ’ | W) F r -“L‘_( 104 ‘ |
104} h - - |
X = [type’ Pr» EECAL’ EHCAL’ n ¢, Nouter» ¢outer’ q, .. -, type € {traCk’ CIUSter} - .
y; = [PID, p1, E, 3, ¢, q, ...],PID € {none, charged hadron, neutral hadron, y, e*, u*} d Jl
h RN N _ 256 10 -0.2 -0.1 0.0 0.1 0.2 10 -0.4 -0.2 0.0 0.2 0.4
i € s 4V = n resolution, (0 -n)/n n resolution, (0" - n)/n

Trainable neural networks: %, &, 9

§1001tt8im”§i§§’14Tev : . Set of tracks & clusters in input
g T WLer scaing ‘ - Classify sub-set of graph nodes
o - Regress parton kinematics

_ - Execution time linear with PU

b~ "2500 5000 7500 10000 12500 15000
Average event size [elements] U—H e)
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https://arxiv.org/abs/2101.08578

Take Home Message
Most HEP data is amenable to graph network.
Numerous ways of building a model.

Computationally challenging at times.

@ 60
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Transforming Derivative

Encoder Classification Segmentation/Normal Estimation

v 256 256 N,

Gl‘)bal (Lmear {LBR ‘LBRD
Feature

.128 128 128 128 128 1024

‘:,.‘( "f:“:«,‘..-f.‘:i.m_ }FFF(—Q@—’ -—>| | /
AT
=»> Plane

Input . < Point
‘Embedding (Attentlon @Concat VMA—Pool ®Repeat l Feature

N xd

N xd
softmax / N x d, N x N N xd N x d
Feed Forward
max(0,xW; + by )Wy + by 1 > see m el [ — - e . »
: / A

Layer Norm :
@ Element-wise sum Lox N f_’

Concatenate a R

tion:

Qv'
softmax | == | V
( Ve ) Input Query Key AttentionMap Value AttentionFeature Output Linear LBR
Linear transform I

Look t
o pzzml;:jcv:zmr . Transpose EScale + SoftMax mSOftMax + [;Norm ® @ e Matrix Multiple | Add | Sub ; Switch

. Output (fed backin) PCT: Point Clout Transformer

Attention is all you need

Transformer, based on attention, initial developed for NLP.
With minor modification, can be applied to set-like data.
Computationally efficient.

- . (¢
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Architecture Search

* By now you realize the extent of the space of meta-structure,
and models : “the sky Is the limit” situation.

* Two main directions of search:
= structural: e.g use layer of type X
= hyper-parameters: e.g use N layers of type X
 Compare models in controlled manner to be conclusive:
= Enough data provided: over-parametrization, efficiency.
= Convergence reached: generalization.
= Accurate performance estimation: cross-validation

= [-fficient navigation: bayesian optimization, genetic.
algorithms, inductive bias.

Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant
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Need for Data

- “What is the best performance one can get ?” rarely has an answer

- When comparing multiple models, one can answer “what is the best
of these models, for this given dataset ?”

- It does not answer “what is the best model at this task ?”

_____ wkl-——————--_kll___-_____k}
0.66 et
3 /
o O 64- 7 \H\ !T Ql'jr
D ..
< [
O 0.62 )
O
m ll
= 0.60
©
5
= 0.58
g
< 0.561
0.54; | | | | |
VS S $ S S
~N ~N v

Training size
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Data Efficiency

- Degeneracy in objective function can arise from under-
constrained model
=~ Not enough data point to constraint all parameters
- Family of solutions make the optimization algorithm stationary
on the training set, while fluctuating on the testing set
- Limit of under-constraint is model type dependent.
- Can usually happen with deep learning models
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Drop-Out

- Special case of regularization in artificial neural network

- During training of the model, set some nodes inactive at a
random rate

O\
NN
PN

XK

% “ﬁo’e‘}é"e{‘;‘c

NPAR (\0 P %
R RV

OO

A
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Under-fitting

- Poor model performance can be explained
- Lack of modeling capacity (not enough parameters,
inappropriate parametrization, ...)
- Model parameters have not reached optimal values

A Ty
X i
o o O/ o
Xo O Xo O
XO . O
XX~ o *x o
x 9:X X Qe X
. >
Under Fit Appropriate
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Over-fitting

- “Too good to be true” model performance can be explained
- Excessive modeling capacity (too many parameters,
parametrization is too flexible, ...)
- Model parameters have learn the trained data by heart
- Characterized by very good performance on the training set
and (much) lower performance on unseen dataset

\ | N
X X
O/ o o .0
:..- o Yeaant :‘_ ::.-,.:
Xx_~ o *x. x0
X Qo X i
X o X xo .............
R iy~ .
Appropriate Over Fit
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Generalization

- Systematic error = bias
- Sensitivity of prediction = variance
- A good model is a tradeoff both

High Bias Low Bias

Low Variance High Variance

Prediction Error

A
Underfitting Overfitting

s .

Training Sample

Bias trade-off

Low Model Complexity High
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Cross Validation

D Validation Set

. Training Set

Round 1 Round 2 Round 3 Round 10
validation g3, 90% 91% 95%

Accuracy:

Final Accuracy = Average(Round 1, Round 2, ...)

- Model selection requires to have an estimate of the
uncertainty on the metric used for comparison

- K-folding provides an un-biased way of comparing models

- Stratified splitting (conserving category fractions) protects
from large variance coming from biased training

- Leave-one-out cross validation : number folds = sample size

Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant
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Bayesian Optimization

- Applicable to optimize function
without close form and that are
expensive to call (numerical
gradient impractical)

- Approximate the objective function
with Gaussian processes (GP)

- Start at random points, then sample

according to optimized acquisition
function
- Expected improvement
— El(x)==E(fp(x)= f (Xpe5))
- Lower confidence bound
LCB(x)=HMgp(x)+ KOgp(x)
- Probability of improvement
— Pl (x)=-

P(fap(x)2 [ (Xpe)+ K)

Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant
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Evolutionary Algorithms

® : : A O ate nital Y - Applicable to function in high
FPopulation . . .
* o " dimensions, with a non regular

landscape
%‘.J@‘é'&f?ﬁ?ft: Next "'F‘.::.'.‘;:" - Start from random population
. P > - ® © . Estimate fittest fraction of individuals
o ® 0 o o ° - Bread and mutate individuals

C. Selection

al UnftNe*wofks - Direction of optimization is given by
& M the cross-over and mutation definition
- Multiple over algorithms : particle

swarn,

O Network O Unfit Network @ Cloned Network

UH
| | | 4 [ 72
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Inductive Bias

 |n data-science, one derives new architectures by
introducing new concept to constrain the information

flow, the latent representation, ..., to what one think
should happen.

=CNN, attention, message passing, ...

* Further constraints imposed by the structure present
naturally the data

=RNN, GNN, ...

* In Science, there is another handle to this, by further
formatting the model architecture to match Physics

principles

= [ quivariance, invariance, conservation,
equation of motion, ...

73
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Equivariance and Invariance

(1 0 0 ) nio C'y \m  pail Observabl
('()l,& ~y () _'. ri _'. Per—Particle Represe Event Rep!
l‘.[l.l —; l";l._/ — l";l.z N 1 (2".\ 2 (2."\[ T g
\: : 0 : ; ) / o} JS_H\
0 0 1 Cynio Cn M = sy
— - bm;*@* )i
5, . S
m=(k; | ..'=/
( ( l:'J )\ Lorentz Learning Layer / T [OIF
k. ILL? k. ' pr( j) E/PrtlFl ””” Network
P wy,) Bk
Jm Deep set
(d) p ) \_
k “‘jm (jm )
/
In Out
( )
— — @2 _ " — Lorentz group equivariant networks
Fio> W-F®F, @Z-f(/’z/>'/’i/®f./
\_ \ J /

Embe

d the symmetry and invariance in the model.
Economy of model parameters.
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Use Physics

a Data b DeltaGN c OGN/HOGN d fq,:0DE’s time derivatives

____________

(@p)n P4 [(@P)n At ! ( EEID EI” i .
s q,p’, q p)n (qv p)z 5 fq,f) Tl (Qa p)z
® A== A S |
GNy At s 3
| Ve oova
Physics (Aq, Ap)gﬁm Integrator (@,P)i— GNy —(4,p):
+ £ HOGNs fap

RN ’ mﬁf ' mﬁjﬂ (@,P)i— GN, — Hox — (a"GN,_f’HGN)L (4, )
(q, P)n+1 ?b (4, P)n+1 (Q, P)n+1 ! op oq )

_________________________________

Rollout trajectories per model
Ground truth True Ham. DeltaGN OGN HOGN

A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, P. Battaglia

Let the model include Physics principles to master convergence

UH
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https://arxiv.org/abs/1909.12790

Summary

= Artificial Neural Networks have a lot of plasticity.
=Complex models are made of meta-structures.
= |ntuition carved the design of meta-structures.
=Roam the architecture landscape with care.

76
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Stochastic Gradient Descent

- Application of one gradient descent is expensive. Can be
prohibitive with large datasets

- Following the gradient update from each and every sample of a
dataset leads to tensions

« In binary classification, samples from opposite categories
would have “opposite gradients”

- Gradients over multiple samples are independent, and can be
computationally parallelyzed

> Estimate the effective gradient over a batch of samples

V., f()=x 2V, f ()

i€ batch

/8
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Adiabatic Quantum Annealing

- System setup with trivial Hamiltonian H(O) and ground state
- Evolve adiabatically the Hamiltonian towards the desired
Hamiltonian H,

- Adiabatic theorem : with a slow evolution of the system, the state
stays in the ground state.

Setup Hamiltonian: H(0) Problem Hamiltonian: H,

Uniform superposition of State minimizing the energy
possible qubit states of the problem
Hamiltonian

100% -
90% -
80%
70%
60% -
50% A
40%
30%
20% -
10% -

0%
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https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/quant-ph/0104129

Simulated Annealing

- Monte-Carlo based method to find ground state of
energy functions
- Random walk across phase space
> accepting descent
> accepting ascent with probability e-AE/kT
- Decrease T with time

%N % D
Temperature
A

"\ ,"

LAY N
-

» Time

£
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Non Analytical SGD

- Some valuable loss function might not be analytical and
their gradients cannot be derived
- Used finite element method to estimate the gradient

numerically
J (x+€)— f(x)
(x) e

V f(x)=

- Method can be extended to using more sampling and
better precision

- Quite expensive computationally in number of function
calls and impractical in large dimension

- Robust methods available in most program library
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Second Order Methods

- Newton-Raphson method defines a recursive procedure to find
the root of a function, using its gradient.

- Finding optimum is equivalent to finding roots of the gradient,
hence applying NR method to the gradient using the Hessian

Flx+e)= F(x)+eV F(x)+ %ETH(x)s

e~—H(x)"'V f(x)

- Convergence guaranteed in certain conditions

- Alternative numerical methods tackle the escape of saddle points
and computation issue with inverting the Hessian

- In deep learning “hessian-free” methods are prohibitive

computationally wise
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Approximate Bayesian Computation

T(datal model ) Ti(model)
T(data)

T(modell data)=

- ABC is applicable when the likelihood Ti(datalmodel)s
intractable/unknown

- The method requires a simulator or surrogate model

- Generate simulated data for models drawn from the prior,
accept/reject whether matching data

- Overly expensive in calls to simulator
= Introduce summary statistics to enhance border cases
- Efficient sampling to boost acceptable models

- Generalized methods for comparing simulated samples with
data

> Most relevant work on likelihood-free inference in HEP
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Internal Node Activation

Nane Plot Equation Derivative

Identity f(z)= 2z fl(z)=1

0 for <0 Yy 0 for x#0
Blinry. 3 (%P f(z)= { 1 for >0 fa >:,_ff' { 7 for x=0
Logistic (a.k a 1 Py / / R

) f(z) = f'(z) = f(z)(1 - f(z))
{ ep) 1L
2 )
Tardl f(x) = tanh(z) = Tae® — 1 fl(z)=1- f(z)*
+C °

ArcTan f(x) = tan ll:.r) f(l‘) = 711
Rectified
0 for <0 0 for < ll
,;":T e f(z) = { x for x>0 fi(=)= { 1 x
Paraneteric
Rectified ar for x<0 or r < (l
Linear Unit f(z)= { x for x>0 { 1
(PreLU) ]
Exponential
. . J aler=1) for z<0 flx Qa T < U
JTJ e f(z)= { r for 20 (x) = { 1 x
(ELy) B
SoftPlus f(]) = ]ug, (14 ('r) f (z) =

ltv»r -

- Any function with a derivative may work

- Many activation to pick from (and there are more, like cos, ...)
- Sigmoid, tanh suffer from vanishing gradients : slow convergence
- Relu and PRelu solve some of the vanishing gradient issue, and
ate computation

IC -
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Operation Vectorization

] . Wll O
ey i —_—
) Iy )
L2 | 2 07
[ Wi3

ANN = matrix operations = parallelizable

1 . (Wi X i) + (wy X ip)
W12 ' [zll = l(WuX i) + (Wy, X 13)
_ ° (W13x il) Ll ( X iZ)_

Computation of prediction from artificial neural network model
can be vectorized to a large extend.

UH
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Non-Convex Optimization

Ii}o“ ;+ar‘\’ ﬁ

ient descent

3-)

- The objective functions optimized in machine
learning are usually non-convex

- Non guaranteed convergence of gradient
descent

- Gradients may vanish near local optimum and
saddle point
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Regularization

- Over-fitting can be limited by additional terms to the objective
function

- Any term that aim at reducing the capacity of the model
- L1: Loss, .= Loss+ )\lz w |
-L2: Loss,,,= Loss+ A Z w2

> " \
uber: Loss,,,= Loss+ \, L if Li< delse O(L,— l6)
- Regularization parameters need2o be optimized too 27,

12F
L1 over-constrainsto [

few parameters sl L2 explodes

with outliers
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The Black-box Dilemma

Depth of
thinking

P. Perona

Practical results

Deep learning may yield great improvements.

Having the “best classification performance” is not always sufficient.

Forming an understand of the processes at play is often crucial.
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https://indico.fnal.gov/event/13497/contributions/19852/

Learning Observables

Electron classification performance 1:50-
Base Additions (k,3) (AUC) 3122 )
THL 0.945
7HL +Mjet 0956 0.50
7THL S (L) 0.970
THL +Mije. [+.2 (1,1) |17 (1,1) | 0.971 R
7HL . (2, _) 0.970 log,o [EFP Observable]
THL  +Mjet (2,1) | = (2,—)| 0.971 | ckground - 7
CNN 0.972 : L

logio [EFP Observable]

Search in the space of functions using decision ordering.
Simplified to the energy flow polynomial subspace.
Extract set of EFP that matches DNN performance.
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https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/2011.01984

Equivariant Derivatives
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| Non-equivariant | E(n)-Equivariant | SE(3)-Equivariant | E(n)-Invariant

E(n)-Equivariant

Gauge Equivariant Convolutional Networks

E(n) Equivariant Graph Neural Networks

\_ and the Icosahedral CNN

J

Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant

UH
| g |




