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Introduction

https://www.rugbyworld.com/news/scrum-put-in-rules-rugby-explained-88838 
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A Definition
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“Giving computers the ability to learn without explicitly programming 
them” A. Samuel (1959).  

Is fitting a straight line machine learning ? 
Models that have enough capacity to define its own internal 
representation of the data to accomplish a task : learning from data.  

In practice : a statistical method that can extract information from the 
data, not obviously apparent to an observer.  

➔ Most approach will involve a mathematical model and a cost/
reward function that needs to be optimized.  

➔ The more domain knowledge is incorporated, the better.  



Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant

Supervised Learning
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● Given a dataset of samples, a subset of features is 
qualified as target, and the rest as input 

● Find a mapping from input to target 
● The mapping should generalize to any extension 
of the given dataset, provided it is generated from 
the same mechanism 
 
 
 

● Finite set of target values :  
➔ Classification 

● Target is a continuous variable :  
➔ Regression

dataset≡ {( xi , yi)}i
find function f s.t. f (xi)= yi
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Unsupervised Learning
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● Given a dataset of samples, but there is no subset of 
feature that one would like to predict 

● Find mapping of the samples to a lower dimension manifold 
● The mapping should generalize to any extension of the 
given dataset, provided it is generated from the same 
mechanism 
 
 

● Manifold is a finite set  
➔ Clusterization 

● Manifold is a lower dimension manifold :  
➔ Dimensionality reduction,  
density estimator

dataset≡ {(xi)}i
find f s.t. f (xi)= pi
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Reinforcement Learning
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● Given an environment with multiple states, given a 
reward upon action being taken over a state 

● Find an action policy to drive the environment 
toward maximum cumulative reward

st+ 1= Env(st , at)
rt= Rew (st , at)

π (a∣ s)= P (At= a∣S t= s)
find π s.t.∑

t
r t is maximum
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Overview
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Dataset

Model

Objective  
function

Optimization Method

Predictive  
model

Many optimization methods adapted to the various type of the 
dataset, model, objective. 

Gradient descent, evolutionary algorithms, ...
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(Some) Machine Learning Methods
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http://scikit-learn.org/stable/tutorial/index.html 

There are a lot of methods out there. 
Focusing on artificial neural networks in this lecture.

http://scikit-learn.org/stable/tutorial/index.html
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Artificial Neural Network

!10

● Biology inspired analytical model, but not bio-mimetic 
● Booming in recent decade thanks to large dataset, increased computational 
power and theoretical novelties 

● Origin tied to logistic regression with change of data representation 
● Part of any “deep learning” model nowadays 
● Usually large number of parameters trained with stochastic gradient descent

h= ϕ(Ux+ v)
o(x)= ωT h+ b

pi≡ p( y= 1∣ x)≡ σ (o(x))=
1

1+ e− o( x)

lossXE= −∑
i
yi ln ( pi)+ (1− yi) ln (1− pi)
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Gradient Descent Optimization

!11

● For a differentiable loss function f, the first Taylor expansion gives 
 

● The direction to locally maximally decrease the function value is anti-
collinear to the gradient  

● Amplitude of the step   to be taken with care to prevent overshooting 

f ( x+ ε)= f ( x)+ ε∇ f ( x)

ε=− γ∇ f ( x)
γ
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Neural Net Architectures
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http://www.asimovinstitute.org/neural-network-zoo

Does not even cover it all : densenet, graph network, ...
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Plasticity of Neural Networks
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• Models can become a complex assembly of 
➡Various layers of neurons 
➡Branches from various heterogenous inputs 
➡Branches to various complementary objectives 
➡Analytical components 
➡Non-analytical re-indexing  
➡… 

• Not covering the uber-structures tailored for various end-goal tasks 
➡Multi-input, Multi-objectives models 
➡Auto-encoders (AE), variational auto-encoders (VAE) 
➡Generative adversarial networks (GAN) 
➡Density estimators (DE) 
➡Normalizing flows (NF) 
➡… 

• Focusing in this lecture on the meta-structures that can be used to 
compose a more complete and complex model
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Dense Networks

https://www.nytimes.com/2008/05/19/us/politics/19campaign.html 
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Feed Forward Networks
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Simplest structure. 
All-to-all connection between neurons of neighboring layers.
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Going Deep
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Kolmogorov’s, and universal approximate theorems push 
towards wide and deep densely connected networks. 

Depth helps with decomposition. 
Width helps with approximation.

DEPTH

W
ID

TH
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Curse of Dimensionality
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● Fully connected layers require a large number of parameters 

● Lots of a capacity in this kind of models 
● Convergence of  models with millions/billions of parameters 

can be hard numerically 
● Computing intensive in training and inference 
● Hashing and pruning studies showed lots of redundancies : 

not all weights are necessary 
● Weight sharing helps reducing dimensionality 

N par
l = N input

l × N node
l + N node

l
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Low Level Feature Exploitation
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Searching for exotic Particles in High-Energy Physics 
with Deep Learning [1402.4735] 

Deeper model

Provided enough training data is available,  
deeper models act as feature extraction from low-level information

https://arxiv.org/abs/1402.4735
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Multi-category Classification
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Search for ttH production in the H-to-bb decay channel 
with leptonic tt decays [cds:2308267] 

Regular analysis fit categories sub-divided using 
DNN output nodes for added sensitivity. 

Slide M. Rieger

https://cds.cern.ch/record/2308267
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Take Home Message 

Dense models are the first ones to try out. 

Can help in simple classification, from low level info. 

Plagued with too many parameters.
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Quantum Derivatives
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https://www.ibm.com/quantum-computing/ 

Objective based on quantum measurement. 
Parameters of a quantum circuits as weights. 

Trainable circuits for quantum machine learning.

Quantum Machine Learning [1611.09347]  
Quantum Machine Learning in High Energy Physics [2005.08582]  

Quantum Machine Learning Models are Kernel Methods [2101.11020] 

https://www.ibm.com/quantum-computing/
https://arxiv.org/abs/1611.09347
https://arxiv.org/abs/2005.08582
https://arxiv.org/abs/2101.11020
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https://news.cnrs.fr/articles/joseph-fourier-is-still-transforming-science 

!22

Convolutional Layers
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Translational Invariance
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Same object can in at different place in images. 
Learning of dense model would have to happen at all locations. 

Tremendous overhead for model training. 
Inductive bias: translation invariance.
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Convolutional Layer
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● Smaller dense network defined as filter 
● Filter applied as stencil code / patch 

● Filter parameters are shared 
● Total Number of parameters is dramatically reduced 
● Available in 1D, 2D and 3D

N par
l = (N input

l /Skernel
l )× (Skernel

l × N filter
l + N filter

l )

1D convolution, kernel size = 7, 1 filter

…

2D convolution 
kernel size = (3x3), 1 filter
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Pooling
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1D Maxpooling 
Pooling size = 2

2D Maxpooling 
Pooling size = (2x2)

https://software.intel.com 

https://software.intel.com 

● Convolutional layer barely reduce the layer size, usually followed by 
a dense layer (back to large numbers of parameters) 

● Not all neighboring filters will “fire” consequently 
● Maxpooling is collecting the maximum activity within a region 
● Non-Analytical re-indexing, but gradients can flow to train the filter

https://software.intel.com
https://software.intel.com
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Stacked Convolution
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Early convolution layer capture local information. 
Late convolution layer capture global information.
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Highway Connection
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Highway networks [1505.00387]

● Stacked layers distill information at consecutive scales 
● Highway network controls how much information from 

previous layer needs to move forward as input to the next 

https://arxiv.org/abs/1505.00387
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Skip Connections
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● Stacked convolution layers distill information at consecutive scales 
● Several ways of conserving the initial information from input

f l (il)→ f l(il)+ il

Deep Residual Learning for Image 
Recognition [1512.03385] 

f l (il)→ f l( ∪
k⩽ l
(ik))

Densely Connected Convolution 
Networks [1608.06993] f l (il)→ f l(il)⋅T (il)+ il⋅(1− T (il))

Highway networks [1505.00387]
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Residual Connection
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● Stacked layers distill information at consecutive scales 
● Residual connection carries the input other to the output, 

dimensionality allowing

Deep Residual Learning for Image 
Recognition [1512.03385] 

f l (il)→ f l(il)+ il

https://arxiv.org/abs/1512.03385
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Dense Connection
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Densely Connected Convolution 
Networks [1608.06993] 

● Stacked layers distill information at consecutive scales 
● dense-net provides the concatenation of all previous layer input to 

the next layer

f l (il)→ f l( ∪
k⩽ l
(ik))

https://arxiv.org/abs/1608.06993
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Image Representation

W vs QCD

Jet-Images – Deep learning edition 
 [1511.05190] 

Calorimeter signal are image-like. 
Projection of reconstructed particle properties onto images possible. 

Potential loss of information during projection.

Deep-learning top taggers or the end of QCD? 
[1701.08784] 

Top vs QCD

!31



Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant
!32

Take Home Message 

The Swiss-knife of image processing. 

Translation invariance only. 

Other invariance with model variants.
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Equivariant Derivatives
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● Training with further knowledge of 
invariance brings improvements 

● Including domain knowledge on 
how object transform brings 
improvements

Group Equivariant Convolution 
Networks [1602.07576] 

p4m 
group

p4 group

HexaConv [1803.02108] 

Deep-learned Top Tagging with 
Lorentz Layer [1707.08966] 
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Equivariant Derivatives
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Lorentz group Equivariant networks [2006.04780] 

Dynamic Routing Between Capsules [1710.09829] 

Gauge Equivariant Convolutional Networks and the 
Icosahedral CNN [1902.04615] 
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Recurrent Cells

https://en.wikipedia.org/wiki/Halley's_Comet 
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Natural Language Processing
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Illustration of words, variable sized, …

http://doi.acm.org/10.1145/2133806.2133826  

● Words have a meaning of their own 
● Order of the words contains additional information 
● Natural language represented as an ordered sequence of variable size

http://doi.acm.org/10.1145/2133806.2133826
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Recurrent Neural Network
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● Sequential (text) of temporal (voice) data contains information in 
their structure 

● Model that can naturally accommodate for variable sized input 
● Characterized by an hidden state carried over steps

st= tanh (U xt+W st− 1+ br)
ot= σ (V st+ bo)
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Long Short Term Memory Cell

!38

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

ct= [ht− 1 , xt ]
f t= σ (W f ct+ b f )
it= σ (W ict+ bi)

C̃= tanh (WC ct+ bC)
Ct= f t∗Ct− 1+ i t∗ C̃ t
ot= σ (Woct+ bo)
ht= ot∗ tanh (Ct)

● LSTM revolutionized text processing in the late 90s 
● Carries around a cell state (Ct) and hidden state (ht) 
● Computationally expensive

Forget gate
Input gate

Control gate

Long Short-Term Memory 
 [doi:10.1162/neco.1997.9.8.1735] 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://dl.acm.org/doi/10.1162/neco.1997.9.8.1735
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Gated Recurrent Unit
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● GRU simplifies the computation from LSTM 
● Only hidden state

ct= [ht− 1 , xt ]
zt= σ (W z ct+ bz)
rt= σ (W r ct+ br)

h̃t= tanh(W h[rt∗ ht− 1 , xt ]+ bh)
ht= (1− zt)∗ ht− 1+ zt∗ h̃t

Learning Phrase Representations using RNN Encode-Decoder for 
Statistical Machine Translartion [1406.1078] 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

https://arxiv.org/abs/1406.1078
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Quasi-Recurrent Models
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Look at this in detail 

Quasi-Recurrent Neural Networks [1611.01576] 

● QRNN takes advantages from CNN and RNN 
● More efficient, accurate on long sequences.

https://arxiv.org/abs/1611.01576


Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant

Challenge in Natural Ordering
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Text have natural 
order. RNN/LSTM can 
correlate the 
information to internal 
representation

There is underlying order 
in collision events. 
Smeared through timing 
resolution. No natural 
order in  observable 

➢ Learn how to sort
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Learn How To Sort

!42

Sorting and “soft” sorting models can be 
concurrently trained with recurrent networks. 

Expensive and tricky to train.

Pointer Networks https://arxiv.org/abs/1506.03134 
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Attention Mechanism

!43

First introduced in natural language translation. 
Provides contextual information where only local information is available. 

Concept has been derived to other architectures.

Neural Machine Translation by Jointly 
Learning to Align and Translate [1409.0473] 

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3 
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Sequence Representation

QCD-Aware Recursive Neural Networks for Jet Physics. 
[1702.00748] B-Jet with Recurrent Neural Networks  

[cds:2255226] 

Somehow arbitrary choice on ordering with sequence representation. 
Physics-inspired ordering as inductive bias. 

Ordering can be learned too somehow.

!44
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Take Home Message 

The Swiss-knife of natural language processing. 

Good with variable size input. 

Ordering might be an issue.
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Spiking Derivatives
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● Spiking Neural Networks are closer to the 
actual biological brain 

● Adapted to temporal data 
● Hardware implementation with low power 
consumption   

● Usually trained using evolutionary algorithms 
● Demonstrated to be economical models 

https://ieeexplore.ieee.org/document/8259423 
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Graph Models

https://writings.stephenwolfram.com/2020/04/finally-we-may-have-a-path-to-the-fundamental-theory-of-physics-and-its-beautiful/ 
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Forewords on Graph

http://btechsmartclass.com/data_structures/graph-representations.html 

A graph is composed of   
● Nodes that can be represented as a vector. 
● Edges that can be represented with the adjacency matrix. 

➔ Flowing of information using matrix operations. 
➔ With machine learning on graphs, edges and nodes might 
acquire latent representations.

!48
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Hits in calorimeter detector

Hits in tracking detector

Graph Representation

!49

Heterogenous data fits well in graph/set representation. 

Objects in an event

Object sub-structure in an event

Graph Neural Networks in Particle Physics 
[2007.13681] 

https://arxiv.org/abs/2007.13681
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The two Infinite
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• Reminder: Neural networks can take many forms. Any 
analytical functions with trainable parameter can serve 
as neural networks. 

• Graph Neural Networks, operating on graph-like data is 
sitting in between meta-structure and uber-structure. 

• Quite fertile ground for innovation. Challenging to cover 
all possible architectures. 

• Covering below some of the essential concepts and 
features.
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Graph Convolutional Network
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Fixed graph connectivity and adjacency matrix (A). 
Make us of spectral graph theory. 

Update rule based on adjacency matrix and learnable parameters (W).

Semi-Supervised Classification with Graph Convolutional 
Networks [1609.02907] 

https://tkipf.github.io/graph-convolutional-networks/
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Message Passing
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Neural Message Passing for Jet Physics 
ML4PS2017.29 

Information constructed on nodes is propagated to connected nodes. 
Multiple ways of achieving message passing concept.

Probing stop pair production at the LHC with 
graph networks [1807.09088] 

JEDI-Net: a jet identification algorithm 
based on interaction networks 

[1908.05318] 
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Dynamic Graph CNN (DGCNN)
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Dynamic Graph CNN for Learning on Point Clouds [1801.07829] 

Convolutional-type edge representation model. 
Representation aggregation mechanism for node update. 
Dynamical connectivity as k-NN in latent representation.
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Graph Attention

!54

Graph connectivity as k-NN in node representation. 
Edge features as node-feature difference. 

Attention coefficients normalized over neighbors (c↦α). 
Multi-head mechanism: stabilization by ensembling.

GAPNet: Graph Attention Based Point Neural Network for 
exploiting Local Feature of Point Cloud [1905.08705] 
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Shared Operations

!55

https://tkipf.github.io/graph-convolutional-networks/ https://imgur.com/gallery/AIFHqe9 

…

https://tkipf.github.io/graph-convolutional-networks/
https://imgur.com/gallery/AIFHqe9
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Graph Connectivity

!56

• “Sets” come with no connectivity at all. 
• Fully connected graphs has the most information flow, 

though can become computationally prohibitive. 
• GNN can be made tractable through sparsification. 
• Fixed/dynamic connectivity from input/latent space. 
• Dynamic connectivity is only re-indexing, and let the 

gradients flow (similarly to maxpooling). 

• Risk of dynamic connectivity from latent space to not have 
the adequate gradient flow to train the latent space. Random 
initialization or additional elements required. 

• Risk of having heavy algorithms in dynamic edge definition.
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Graph Neural Networks Formalism
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Graph attributes 

Node attributes 

Edge attributes 

Updated attributes 

Updated attributes 

Updated attributes 

Relational inductive biases, deep learning, and 
graph networks [1806.01261]

Lots of possibilities to operate on a graph. 
Most available architectures can be expressed with Φ and ρ. 

Readily software:  
https://github.com/deepmind/graph_nets (TF) 

https://pytorch-geometric.readthedocs.io (Torch) 
https://jraph.readthedocs.io (JAX) 

https://docs.dgl.ai (py)

https://github.com/deepmind/graph_nets
https://pytorch-geometric.readthedocs.io/en/latest/
https://jraph.readthedocs.io/en/latest/
https://docs.dgl.ai
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Pile-Up Mitigation
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● Locally connected graph of 
reconstructed particle flow candidates 

● Gated graph neural network (GGNN) 
to evolve node representations 

● per-particle pile-up classification 
extract for neutralsPileup mitigation at the Large Hadron Collider with Graph 

Neural Networks [1810.07988] 

https://arxiv.org/abs/1810.07988
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Particle Flow Reconstruction
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MLPF: Efficient Machine-Learned Particle-Flow 
Reconstruction Using Graph Neural Networks [2101.08578] 

● Set of tracks & clusters in input 
● Classify sub-set of graph nodes 
● Regress parton kinematics 
● Execution time linear with PU

https://arxiv.org/abs/2101.08578
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Take Home Message 

Most HEP data is amenable to graph network. 

Numerous ways of building a model. 

Computationally challenging at times.
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Transforming Derivative
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Attention is all you need [1706.03762]
https://jkk.name/post/2017-10-20_onlyattention/ 

Transformer, based on attention, initial developed for NLP. 
With minor modification, can be applied to set-like data. 

Computationally efficient.

PCT: Point Clout Transformer [2012.09688] 
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Outlook

https://www.jpl.nasa.gov/news/testing-proves-its-worth-with-successful-mars-parachute-deployment 



Deep Learning Architectures, TeraScale School of ML 2021, J-R Vlimant

Architecture Search

!63

• By now you realize the extent of the space of meta-structure, 
and models : “the sky is the limit” situation. 

• Two main directions of search:  
➡structural: e.g use layer of type X 
➡hyper-parameters: e.g use N layers of type X 

• Compare models in controlled manner to be conclusive: 
➡Enough data provided: over-parametrization, efficiency. 
➡Convergence reached: generalization. 
➡Accurate performance estimation: cross-validation  
➡Efficient navigation: bayesian optimization, genetic. 

algorithms, inductive bias.
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Need for Data

!64

● “What is the best performance one can get ?” rarely has an answer 
● When comparing multiple models, one can answer “what is the best 

of these models, for this given dataset ?” 
● It does not answer “what is the best model at this task ?” 
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Data Efficiency

!65

● Degeneracy in objective function can arise from under-
constrained model 

➢ Not enough data point to constraint all parameters 
● Family of solutions make the optimization algorithm stationary 

on the training set, while fluctuating on the testing set 
● Limit of under-constraint is model type dependent.  
● Can usually happen with deep learning models
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Drop-Out

!66

● Special case of regularization in artificial neural network 
● During training of the model, set some nodes inactive at a 

random rate
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Under-fitting

!67

● Poor model performance can be explained  
➢ Lack of modeling capacity (not enough parameters,  

inappropriate parametrization, …) 
➢ Model parameters have not reached optimal values
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Over-fitting

!68

● “Too good to be true” model performance can be explained  
➢ Excessive modeling capacity (too many parameters, 

parametrization is too flexible, ...) 
➢ Model parameters have learn the trained data by heart 

● Characterized by very good performance on the training set 
and (much) lower performance on unseen dataset 

2/25/21
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Generalization

!69

● Systematic error ≡ bias 
● Sensitivity of prediction ≡ variance 
● A good model is a tradeoff both 
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Cross Validation

!70

● Model selection requires to have an estimate of the 
uncertainty on the metric used for comparison 

● K-folding provides an un-biased way of comparing models 
● Stratified splitting (conserving category fractions) protects 

from large variance coming from biased training 
● Leave-one-out cross validation : number folds ≡ sample size
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Bayesian Optimization

!71

● Applicable to optimize function 
without close form and that are 
expensive to call (numerical 
gradient impractical) 

● Approximate the objective function 
with Gaussian processes (GP) 

● Start at random points, then sample 
according to optimized acquisition 
function 

➢ Expected improvement 

➢ Lower confidence bound 

➢ Probability of improvement 

− EI (x)=− E ( f GP ( x)− f ( xbest))

LCB (x)= μGP ( x)+ κσGP ( x)

− PI (x)=− P ( f GP ( x)⩾ f (xbest)+ κ)
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Evolutionary Algorithms
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● Applicable to function in high 
dimensions, with a non regular 
landscape 

● Start from random population 
● Estimate fittest fraction of individuals 
● Bread and mutate individuals 

● Direction of optimization is given by 
the cross-over and mutation definition 

● Multiple over algorithms : particle 
swarn, ... 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Inductive Bias
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• In data-science, one derives new architectures by 
introducing new concept to constrain the information 
flow, the latent representation, …, to what one think 
should happen. 

➡CNN, attention, message passing, … 
• Further constraints imposed by the structure present 

naturally the data 
➡RNN, GNN, … 

• In Science, there is another handle to this, by further 
formatting the model architecture to match Physics 
principles 

➡Equivariance, invariance, conservation, 
equation of motion, … 
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Equivariance and Invariance
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Embed the symmetry and invariance in the model. 
Economy of model parameters.

Deep set 
[1810.05165] 

Lorentz Learning Layer 
[1707.08966] 

Lorentz group equivariant networks 
[2006.04780] 
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Use Physics
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Let the model include Physics principles to master convergence

A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, P. Battaglia [1909.12790] 

https://arxiv.org/abs/1909.12790
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Summary
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➡Artificial Neural Networks have a lot of plasticity. 
➡Complex models are made of meta-structures. 
➡Intuition carved the design of meta-structures. 
➡Roam the architecture landscape with care.
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Stochastic Gradient Descent
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● Application of one gradient descent is expensive. Can be 
prohibitive with large datasets 

● Following the gradient update from each and every sample of a 
dataset leads to tensions 

◆ In binary classification, samples from opposite categories 
would have “opposite gradients” 

● Gradients over multiple samples are independent, and can be 
computationally parallelyzed 

➔ Estimate the effective gradient over a batch of samples

∇ eff f ( x)=
1
N ∑

i∈ batch
∇ i f ( x)
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Adiabatic Quantum Annealing 
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➢ System setup with trivial Hamiltonian H(0) and ground state 
➢ Evolve adiabatically the Hamiltonian towards the desired 

Hamiltonian Hp 
➢ Adiabatic theorem : with a slow evolution of the system, the state 

stays in the ground state.

https://arxiv.org/abs/quant-ph/0001106 
https://arxiv.org/abs/quant-ph/0104129

https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/quant-ph/0104129
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Simulated Annealing
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● Monte-Carlo based method to find ground state of 
energy functions 

● Random walk across phase space  
➔ accepting descent 
➔ accepting ascent with probability e-ΔE/kT 

● Decrease T with time
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Non Analytical SGD
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● Some valuable loss function might not be analytical and 
their gradients cannot be derived  

● Used finite element method to estimate the gradient 
numerically 
 

● Method can be extended to using more sampling and 
better precision 

● Quite expensive computationally in number of function 
calls and impractical in large dimension 

● Robust methods available in most program library

∇ f (x)= f ( x+ ε)− f ( x)ε
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Second Order Methods
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ε∼ − H (x)− 1∇ f ( x)

● Newton-Raphson method defines a recursive procedure to find 
the root of a function, using its gradient. 

● Finding optimum is equivalent to finding roots of the gradient, 
hence applying NR method to the gradient using the Hessian 
 
 
 

● Convergence guaranteed in certain conditions 
● Alternative numerical methods tackle the escape of saddle points 

and computation issue with inverting the Hessian 
● In deep learning “hessian-free” methods are prohibitive 

computationally wise

f ( x+ ε)= f ( x)+ ε∇ f ( x)+ 1
2
εT H ( x)ε
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Approximate Bayesian Computation
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● ABC is applicable when the likelihood                         is 
intractable/unknown 

● The method requires a simulator or surrogate model 
● Generate simulated data for models drawn from the prior, 

accept/reject whether matching data 

● Overly expensive in calls to simulator 
➢ Introduce summary statistics to enhance border cases 
➢ Efficient sampling to boost acceptable models 
➢ Generalized methods for comparing simulated samples with 

data 

➔ Most relevant work on likelihood-free inference in HEP https://
arxiv.org/abs/1805.12244  

π(model∣data)= π(data∣model )π(model )
π(data)

π(data∣model )

https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1805.12244
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!84
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Internal Node Activation

!85

● Any function with a derivative may work 
● Many activation to pick from (and there are more, like cos, ...) 
● Sigmoid, tanh suffer from vanishing gradients : slow convergence 
● Relu and PRelu solve some of the vanishing gradient issue, and 

accelerate computation
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Operation Vectorization
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ANN ≡ matrix operations  ≡ parallelizable

Computation of prediction from artificial neural network model 
can be vectorized to a large extend.
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Non-Convex Optimization
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● The objective functions optimized in machine 
learning are usually non-convex 

● Non guaranteed convergence of gradient 
descent 

● Gradients may vanish near local optimum and 
saddle point
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Regularization
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● Over-fitting can be limited by additional terms to the objective 
function 

● Any term that aim at reducing the capacity of the model 
➢ L1 :  
➢ L2 : 
➢ Huber :   

● Regularization parameters need to be optimized too

Lossreg= Loss+ λ1∑ ∣wi∣
Lossreg= Loss+ λ2∑ wi

2

Lossreg= Loss+ λh(12 L2 if L1⩽ δ else δ(L1− 12 δ))

L2 explodes 
with outliers

L1 over-constrains to 
few parameters

2/25/21
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The Black-box Dilemma
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Deep learning may yield great improvements. 
Having the “best classification performance” is not always sufficient. 

Forming an understand of the processes at play is often crucial.

Deep Learning

P. Perona DSHEP2017 

https://indico.fnal.gov/event/13497/contributions/19852/
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Learning Observables
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https://arxiv.org/abs/2010.11998 
https://arxiv.org/abs/2011.01984 

Search in the space of functions using decision ordering. 
Simplified to the energy flow polynomial subspace. 
Extract set of EFP that matches DNN performance.

Electron classification performance

https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/2011.01984
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Equivariant Derivatives
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Lorentz group Equivariant networks [2006.04780] 

Dynamic Routing Between Capsules [1710.09829] 

Gauge Equivariant Convolutional Networks 
and the Icosahedral CNN [1902.04615] 

E(n) Equivariant Graph Neural Networks [2102.09844] 


