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Outline

*Model convergence.

*Model comparison with K-folding.

*Data efficiency of model types.

*Arch search with Bayesian optimization.

*Graph network for particle-flow reconstruction.
«Jet tagging with interaction network.
*Vertexing with set2graph models.

Github repository for the hands-on
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https://github.com/vlimant/NNArchTeraScale2021

Model Comparison
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Generalization

- Systematic error = bias
- Sensitivity of prediction = variance
- A good model is a tradeoff both

High Bias Low Bias

Low Variance High Variance

Prediction Error

A
Underfitting Overfitting

s .

Training Sample

Bias trade-off

Low Model Complexity High
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Cross Validation

D Validation Set

. Training Set

Round 1 Round 2 Round 3 Round 10
validation g3, 90% 91% 95%

Accuracy:

Final Accuracy = Average(Round 1, Round 2, ...)

- Model selection requires to have an estimate of the
uncertainty on the metric used for comparison

- K-folding provides an un-biased way of comparing models

- Stratified splitting (conserving category fractions) protects
from large variance coming from biased training

- Leave-one-out cross validation : number folds = sample size
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Need for Data

- “What is the best performance one can get ?” rarely has an answer

- When comparing multiple models, one can answer “what is the best
of these models, for this given dataset ?”

- It does not answer “what is the best model at this task ?”
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Bayesian Optimization

- Applicable to optimize function
without close form and that are
expensive to call (numerical ooservaton &
gradient impractical)

- Approximate the objective function
with Gaussian processes (GP)

- Start at random points, then sample _ =
according to optimized acquisition . e cpservaten &)
function

- Expected improvement

— El(x)==E(fp(x)= f (Xpe5))
- Lower confidence bound

LCB (x)= Hgp(x)+ KOgp(x)
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Particle Flow Reconstruction
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Trainable neural networks: %, &, 9
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https://arxiv.org/abs/2101.08578

Jet-id with Graph Network
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All particles of a jet, and vertex added on an all-to-all
message passing graph network.

Graph-level classification (binary or multi-class)

10
10/26/20

GNN in HEP, IEEE-NSS 2020 Short Courses, J.-R. Vlimant



Vertexing with set2graph
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Learning graphs from sets, applied to vertexing
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https://arxiv.org/abs/2002.08772

