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Outline

!2

•Model convergence. 
•Model comparison with K-folding. 
•Data efficiency of model types. 
•Arch search with Bayesian optimization. 

•Graph network for particle-flow reconstruction. 
•Jet tagging with interaction network. 
•Vertexing with set2graph models.

Github repository for the hands-on 
https://github.com/vlimant/NNArchTeraScale2021 

https://github.com/vlimant/NNArchTeraScale2021
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Model Comparison
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Generalization
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● Systematic error ≡ bias 
● Sensitivity of prediction ≡ variance 
● A good model is a tradeoff both 
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Cross Validation
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● Model selection requires to have an estimate of the 
uncertainty on the metric used for comparison 

● K-folding provides an un-biased way of comparing models 
● Stratified splitting (conserving category fractions) protects 

from large variance coming from biased training 
● Leave-one-out cross validation : number folds ≡ sample size
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Need for Data
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● “What is the best performance one can get ?” rarely has an answer 
● When comparing multiple models, one can answer “what is the best 

of these models, for this given dataset ?” 
● It does not answer “what is the best model at this task ?” 
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Bayesian Optimization
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● Applicable to optimize function 
without close form and that are 
expensive to call (numerical 
gradient impractical) 

● Approximate the objective function 
with Gaussian processes (GP) 

● Start at random points, then sample 
according to optimized acquisition 
function 

➢ Expected improvement 

➢ Lower confidence bound 

➢ Probability of improvement 

− EI (x)=− E ( f GP ( x)− f ( xbest))

LCB (x)= μGP ( x)+ κσGP ( x)

− PI (x)=− P ( f GP ( x)⩾ f (xbest)+ κ)
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https://writings.stephenwolfram.com/2020/04/finally-we-may-have-a-path-to-the-fundamental-theory-of-physics-and-its-beautiful/ 
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Graph Models
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Particle Flow Reconstruction
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MLPF: Efficient Machine-Learned Particle-Flow 
Reconstruction Using Graph Neural Networks [2101.08578] 

● Set of tracks & clusters in input 
● Classify sub-set of graph nodes 
● Regress parton kinematics 
● Execution time linear with PU

https://arxiv.org/abs/2101.08578


GNN in HEP, IEEE-NSS 2020 Short Courses, J.-R. Vlimant

 Jet-id with Graph Network
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jet

All particles of a jet, and vertex added on an all-to-all 
message passing graph network. 

Graph-level classification (binary or multi-class)

vertex

10/26/20
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Vertexing with set2graph
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Learning graphs from sets, applied to vertexing 
[2002.08772] 

https://arxiv.org/abs/2002.08772

