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Outline
I. Variational Autoencoders

II.Introduction to Generative Adversarial Networks (GANs)
➢ Adversarial frameworks

III.Tutorial: Implementation of GANs

BREAK

IV.Latest developments & advanced techniques
➢ Wasserstein GANs

V.Application in physics research
➢ Simulation acceleration
➢ Style transfer (domain adaption)

VI.Tutorial: Implementation of  Wasserstein GANs

Feel free to ask questions 
during the seminar!
Just “raise” your hand...
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Supervised and Unsupervised Learning

- Generative Models
- Variational Autoencoders
- Generative Adversarial Networks 
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Supervised Learning
● Situation

 Large labeled data set (pair of input      and output    )
● Typical Task:

 Learn function to map input to specific output
 Train model to predict the associated label
 Achieve best generalization performance
 Infer conditional probability density 

 y
1

 y
2
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Unsupervised Learning
● Typical Situation: non labeled data set

● Tasks:
 Learn (low dimensional) data encodings → autoencoders
 Estimate underlying probability density → generative models
 Clustering, anomaly detection – find (non-) similar samples

● Infer a priori probability density

● Models typical trained without label information
 Contrast: semi-supervised learning
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Recap: Autoencoders

● Reconstruction of input data (approximation of identity function)
● Learning interesting representation (constraints to hidden layer)
● Objective function:

● Deep autoencoders often show underfitting → use shortcuts!

Encoder Decoder

Input 
Compressed 
Representation Reconstruction

x ^ x(Wx+b) (W'z+b') z
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Approximate data distribution       with another distribution       

                                                                                             = distribution parameters   

Learn prior distribution:
Maximizing Likelihood
Variational Autoencoder

Learn to generate samples following
Without using directly     
Train a generator only→ GANs

Generative Models
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Variational Autoencoder

● Learned representation is not an arbitrary function
➢ Impose prior distribution on the hidden (low dimensional) representation

● Trained decoder part can be used as generator (sample from prior distribution)
● Objective function = reconstruction error + divergence of hidden representation 

from a prior

Kullback-Leibler Divergence:
Measure of information loss if 
is used instead of

Encoder Decoder

Input 
Compressed 
Representation Reconstruction

x ^ x(Wx+b) (W'z+b') z
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Variational Autoencoder
Gaussian prior:

● Encoder            learns latent parameters      
                      of Gaussian distribution

● Re-parametrization
with

● Example: 2D Gaussian
 Only two independently normal distributed 

parameters in hidden layer for each input
●
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Variational Autoencoder

Objective:
 

● Mean-squared-error: → How accurate input can be reconstructed
● KL-divergence: → How close the latent variables match (unit Gaussian)
● Allows walk in latent space

VAE trained on MNIST using 2D Gaussian prior

Improved quality for increased size of latent space
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Variational Autoencoder

● Samples of Variational Autoencoders often look noisy
 Gaussian prior not always best choice / can use arbitrary prior distribution
 Gaussian distributions can not capture all modes of the data
 Mean-squared-error loss very inflexible
  

➢  Try adversarial approach → Only train a generator

Latent space of VAE trained on MNIST 
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Introduction to GANs

● Generative models
● Basics of GANs
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Generative Adversarial Networks - GANs

https://ailab.criteo.com/iclr-2019-stats-trends-and-best-papers/
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How to train a Generator

I. Objective: learn to generate new samples following 

II.Learn a function that transform a distribution          into       using a generator   

                  →  latent space

III.Generator        is implemented as neural network with weights 

Noise input
GeneratorGenerator

Samples following  
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I. Hard to formulate a supervised training loss

 

II.Use unsupervised training to train the generator
➢  Objective: 
➢  Measure: given by second neural network

→ Generated samples of generator should be

     similar to real samples after training 
➢  without reproducing training data

Generative Adversarial Networks

→ Adversarial approach:

Train 2 networks adversarial (against each other)

GeneratorGenerator

Art forger
Wants to create some fake 

images
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I.  Generator
➢  Try to generate realistic samples

II. Discriminator   
➢  Try to discriminate between fakes and  

realistic images
➢  Evaluate if 

III.Discriminator returns probability if 
generated sample is real

GeneratorGenerator

This is a fake
Image!

I’m sure with 97%!

Discriminator Discriminator

This is a real
Image!

I’m sure with 98%!

Generative Adversarial Networks

“GANs is the most interesting idea in the last ten years in machine learning.” - Y. LeCun
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GeneratorGenerator

Input
Noise

Generator

Fake 
paintings

Input
Real paintings

GeneratorGeneratorGenerator

Fake 
paintings

This is a fake
image!

I’m sure with 95%!

Let’s tune the weights
to minimize the probability

Input
Noise

DiscriminatorDiscriminator

Train Discriminator Train Generator
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Train Discriminator

GeneratorGenerator

Train Generator
Input
Noise

Generator

Fake 
paintings

Input
Real paintings

GeneratorGeneratorGenerator

Fake 
paintings

I think this is a
fake image!

I’m sure with 65%!

Let’s tune the weights
to minimize the probability

Input
Noise

DiscriminatorDiscriminator
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I.  Implemented as neural network      having weights   

II. Maximize loss → minimize binary cross entropy
➢  Tuning discriminator weights

III.Typical classification task for neural network
➢   Learns to separate two classes Discriminator

GeneratorGenerator

Noise input

Generator

Fake paintings

Real paintings

Real samples Generated fake 
samples

Expectation value

Train the Discriminator
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Train the Generator

I.  Optimal discriminator is freezed

II. Minimize loss: → maximize binary cross entropy
➢  Tuning the generator weights
➢  Discriminator should fail to discriminate

III. Best case:
coin flipping

Discriminator

GeneratorGenerator

Noise input

Fake paintings

This is a fake
Image!

I’m sure with 95%!

Let’s tune the weights
To minimize the probability
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GAN Training

Training 2 networks at the same time is challenging
Losses of discriminator and generator are highly dependent

I. Train generator and discriminator alternating
➢  Min/Max game
➢  Sum of both players is zero

II.Finding Nash equilibrium is hard
➢  Discriminator and generator need to have same quality
➢  Minimize Jensen-Shannon divergence (assume optimal discriminator)
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Optimal Evolution of GAN Training

Generated samples

Data samples

Discriminator

Generator

Epochs   

Gradient of discriminator guides generator
→ G generates samples which are more likely identified as data

Goodfellow et al.   -   arXiv:1406.2661
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• Discriminator / classical DCNN for classification
• Use sigmoid (1 output node) / softmax (2 output nodes) after last layer

• DCGANs (Deep Convolutional GANs) show improved stability

• Use Deep Convolutional generator and discriminator:
I.  Use batch normalization
II. Remove fully connected hidden layers
III.Use ReLU in the generator
IV.Use LeakyReLU in the discriminator
V. Use transposed convolutions

LeakyReLU

Network Design
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I.   Topology of the generator:
➢  Decrease feature space
➢  Increase spatial extent

II.  Supports a simple structured latent space
 

III. Use transposed convolutions + striding
 

➔ Shows improved training stability

Deep Convolutional GAN (DC-GAN)

A. Radford, L. Metz, S. Chintala - https://arxiv.org/abs/1511.06434 

Paul-Louis Pröve, 
Towards Data Science
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Implementation: Adversarial Training

Generate fake samples     similar to real samples    

I. Train discriminator
➢ Sample noise   , feed it into the generator to generate fake samples
➢ Train discriminator to classify fake     and real samples

II.Train generator using the discriminator feedback
➢ Freeze parameters of discriminator
➢ Generate fake samples                   and pass it to the discriminator
➢ Adapt weights of      by fooling the discriminator  

III.Unfreeze parameters of the discriminator
     # freeze / unfreeze layers in a model

     for layer in model.layers:

         layer.trainable = True    # False

     # update parameters for a single batch

     loss = model.train_on_batch(x, y)
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Generative Adversarial Networks

● Wrong global structure

● Wrong body parts

ImageNet
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Manifold Hypothesis
Idea: Manifolds of meaningful pictures are highly concentrated with very little volume and 
embedded in a very high dimensional space

I. Generation of images is a very challenging task

II.Correlations / probability dimension are high dimensional

Example: Try to generate images randomly:

“To deal with a 14-dimensional space, visualize a 3-D space and say 'fourteen' to yourself very loudly. 
Everyone does it.” - G. Hinton

Goal Sample 1 Sample 100,000 You will even never reach this 
“neighborhood sample”
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Evolution of GANs - 2016

Odena, Olah, Shlens - arXiv:1610.09585
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Evolution of GANs

Zhang, Goodfellow, Metaxas, Odena - arXiv:1805.08318

goldfish

bunting
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GANs not perfect...

Karras, AIla, Laine, Lehtinen - arXiv:1710.10196

Brock, Donahue, Simonyan - https://arxiv.org/abs/1809.11096

→ Much better images in the next lecture...
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Conditioning of GANs – Semi Supervised
• Constrain generator to learn conditional probability distribution

 Reduce complexity of latent space, allow for interpretations
➢ Feed generator and discriminator additional information (e.g. class labels: dog)

 Force generated samples show specific characteristics (label dependencies)



32 Tutorial on Generative Models
Glombitza | RWTH Aachen | | 2nd Terascale Machine Learning School03/05/21

Conditioning of GANs

➢ Field of generative model is growing very fast

A. Odena et al. 2016

T. Miyato et al. 2017

H. Zhang et al. 2018

InfoGAN

Conditional image synthesis

Chen et al. 2016
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VAE vs GAN

VAE GAN

https://blog.openai.com/generative-models/
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Next Lecture: Advanced Techniques
● Which picture is generated, which picture is part of CELEB A data set?

11 22 33 44

55 66 77 88



35 Tutorial on Generative Models
Glombitza | RWTH Aachen | | 2nd Terascale Machine Learning School03/05/21

Summary
• Generative Models

 Generation of new samples using approximation of underlying data distribution

• Variational Autoencoder
 Hidden representation follows low dimensional arbitrary prior distribution
 Trained decoder part can be used as generator to produce new samples

• Generative Adversarial Networks
 Hand-coded loss is replaced by discriminator (tries to discriminate between fake 

samples and real samples)
 Adversarial training: generator and discriminator trained against each other
 Generator tries to fool discriminator
 Use conditioning to create prior on latent space
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References & Further Reading

● Dr. David Walz, DLiPR, Summerterm 2017
● Kingma, Welling: Variational Autoencoder - https://arxiv.org/abs/1312.6114
● Makzhani et al.: Adversarial Autoencoders - https://arxiv.org/abs/1511.05644
● Goodfellow et al.: Generative Adversarial Networks - https://arxiv.org/abs/1406.2661
● Odena et al.: AC-GAN - https://arxiv.org/abs/1610.09585
● Radford et al.: DCGAN - https://arxiv.org/abs/1511.06434
● Zhang et al.: SAGAN - https://arxiv.org/pdf/1805.08318.pdf

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1511.05644
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1610.09585
https://arxiv.org/abs/1511.06434
https://arxiv.org/pdf/1805.08318.pdf


Open jupyter notebooks in google colab:

You can find the repository at:
https://github.com/Napoleongurke/tutorial_generative_models

Open PART I: Vanilla_GAN.ipynb

Tutorial
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https://github.com/Napoleongurke/tutorial_generative_models
https://colab.research.google.com/github/Napoleongurke/tutorial_generative_models/blob/master/Vanilla_GAN.ipynb
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Arithmetic in Latent Space
Idea: Discover structure of the latent space

• Can we do arithmetic with latent vectors of generated samples which represent different 
characteristics?

• Average over several samples to get representation vector

A. Radford, L. Metz, S. Chintala - https://arxiv.org/abs/1511.06434 
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