
VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Introduction to Normalizing Flows

Ullrich Köthe
Visual Learning Lab, Heidelberg University

joint work with Lynton Ardizzone, Stefan Radev, Jakob Kruse, Peter Sorrenson,
Tim Adler, Sebastian Wirkert, Victor Ksoll, Anja Butter, Armand Rousselot,

Tilman Plehn, Ralf Klessen, Carsten Rother, Lena Maier-Hein

Terascale School, March 2021

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Generative Modelling

• Deep learning success story
– Compute predictions 𝑦 directly from complex data 𝑥

– Point estimates: ො𝑦 ≈ 𝑦∗ = argmax 𝑝 𝑦 𝑥), posteriors: Ƹ𝑝𝜃 𝑦 𝑥) ≈ 𝑝 𝑦 𝑥)

– Relies on discriminative / transductive machine learning
(does not first build a “model of the world” as traditional sciences do)

• Problem: discriminative models are hard to interpret, explain, validate

 Generative modelling
– Turn the problem around: learn the data generation likelihood 𝑝 𝑥 𝑦)

– More difficult: requires insight beyond mere prediction capability

– Solve the original task via Bayes theorem

𝑝 𝑦 𝑥) =
𝑝 𝑥 𝑦) 𝑝(𝑦)

𝑝(𝑥)

Feynman: “What I cannot create, I do not understand.”
2

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Generative Modelling with Neural Networks

GANs
(Generative Adversarial Networks)

3

(Variational) Autoencoders Normalizing Flows
(Invertible Neural Networks, INNs)

Generator 𝑧ො𝑥
random
numbers

generated
data

Discriminator

𝑥
real
data

“real” or “fake” loss INN𝑥 ≡ ො𝑥 𝑧
latent
codes

real and gene-
rated data

𝑝 𝑥 = 𝑝 𝑧 = 𝑓 𝑥 ⋅ det ∇𝑓

maximum likelihood loss

Encoder and Decoder
the are same network,
run forward / backward

Decoder 𝑧ො𝑥
latent
codes

generated
data

𝑥
real
data

reconstruction
(cycle) loss

Encoder

𝑝(𝑧)

re
fe

re
n

ce
d

is
tr

ib
. l

o
ss

pure generation lossy encoding / decoding lossless encoding / decoding

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Normalizing flows

Model complicated probabilities as bijective mappings of simple ones

• Example: transport (“flow”) from simple “sand pile” to target „sand piles“

4

transport big mass
to two small masses

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Normalizing flows

Model complicated probabilities as bijective mappings of simple ones

• Example: transport (“flow”) from simple “sand pile” to target „sand piles“

5

transport big mass
to two small masses

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Normalizing flows

Model complicated probabilities as bijective mappings of simple ones

• Example: transport (“flow”) from simple “sand pile” to target „sand piles“

6

transport big mass
to two small masses

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Normalizing flows

Model complicated probabilities as bijective mappings of simple ones

• Example: transport (“flow”) from simple “sand pile” to target „sand piles“

7

transport big mass
to two small masses

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Normalizing flows

Model complicated probabilities as bijective mappings of simple ones

• Mathematically: target distribution is a push-forward of reference distribution

8

𝑝(𝑧)

reference distribution

𝑝(𝑥)

target distribution

𝑧 = 𝑓 𝑥
𝑥 = 𝑓−1(𝑧)

transport map

𝑝 𝑥 = 𝑝 𝑧 = 𝑓 𝑥 det ∇𝑓

𝑝 𝑥 = 𝑓#𝑝(𝑧)

change of variables formula

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Multiple Possibilities for Normalizing Flows

Autoregressive Models

Chain rule decomposition:

𝑝 𝑥1, … , 𝑥𝐷 =ෑ
𝑖
𝑝𝑖 𝑥𝑖 𝑥<𝑖)

triangular reparameterization:

∀𝑖: 𝑥𝑖 = 𝑓𝑖(𝑧𝑖 , 𝑥<𝑖) monoton.

inverse direction inefficient

 use two complementary nets

9

iResNets
(invertible residual networks)

Residual block:

𝑧 = 𝑥 + 𝑓(𝑥)

is invertible when

𝑓 𝑥 Lipshitz < 1

inverse direction is reasonably
efficient (fixpoint or Newton
iterations)

RealNVP

Affine coupling layer:

𝑧 =
𝑧1
𝑧2

=
𝑥1 ⋅ 𝑠2 𝑥2 + 𝑡2(𝑥2)

𝑥2
inverse is equally efficient:

𝑥 =
𝑥1
𝑥2

=
(𝑧1 − 𝑡2 𝑧2)/𝑠(𝑧2)

𝑧2

example: parallel WaveNet example: Residual Flow Net example: GLOW

𝑧𝑥 ≡ ො𝑥

𝑥 𝑧

𝑓(𝑥) 𝑧

𝑧2

𝑧1

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Coupling Layers and RealNVP

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Invertible Neural Networks (INNs) with Coupling Layers

11

Coupling layer

𝑧

𝑧

𝑧

⊘ −
𝑥1

𝑥2

𝑧1

𝑧2

𝑥 𝑧𝑠2 𝑡2

nested functions
s2 and t2 are

always executed in
the same direction
 unrestricted neural

networks

Powerful generative models: RealNVP („non-volume preserving“) [Dinh et al. 2017]

• Network is a sequence of affine coupling layers

• Each coupling layer splits its input 𝑥 ∈ ℝ𝐷 into two halves 𝑥1, 𝑥2 ∈ ℝ𝐷/2

• Upper half is subjected to an affine transformation  outputs 𝑧1, 𝑧2 ∈ ℝ𝐷/2

• Affine coefficients are computed by standard fully connected or convolutional networks

𝑠2 ∈ ℝ+
𝐷/2

and 𝑡2 ∈ ℝ𝐷/2 from the lower half’s data

Forward computation: 𝑧1 = 𝑥1 ⊙ 𝑠2 𝑥2 + 𝑡2 𝑥2 , 𝑧2 = 𝑥2

Inverse computation: 𝑥1 = 𝑧1 − 𝑡2(𝑧2) ⊘ 𝑠2 𝑧2 , 𝑥2 = 𝑧2

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Deep INNs

• Concatenate many coupling layers

• Alternate with orthogonal layers 𝑄
Active (upper lane) and passive (lower lane) dimensions change in each layer

– Random permutations or projections are good enough, learning Q is not necessary

• Surprisingly powerful despite its simplicity

• Similar to autoencoder: forward mode = encoder, backward mode = decoder
– Encoder and decoder are merged into a single network

– Lossless encoding due to invertibility (no bottleneck)

12

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

3

3

3 3

3

3

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Training Deep INNs with Maximum Likelihood Loss

Parameters 𝜃

• Training objective:

• Especially simple when 𝑝(𝑧) is standard normal and 𝑠𝑙 𝑥𝑙2 = exp ǁ𝑠𝑙 (𝑥𝑙2):

13

෠𝜃 = argmax
𝜃

ෑ
𝑖
𝑝𝜃 𝑥(𝑖)

= argmin
𝜃

෍
𝑖
−log 𝑝 𝑧 = 𝑓𝜃 𝑥(𝑖) − log det ∇𝑓𝜃 𝑥(𝑖)

෠𝜃 = argmin
𝜃

෍
𝑖
𝑓𝜃 𝑥(𝑖)

2
− 2෍

𝑙
ǁ𝑠𝑙 𝑥𝑙2

𝑖

1

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

3

3

3 3

3

3

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Invertible ResNets

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Recap: What is a ResNet?

• Instead of modeling the transition from layer 𝑙 to 𝑙 + 1
𝑧𝑙+1 = ℱ𝑙 𝑧𝑙

model the difference (residual) between consecutive layers
𝑧𝑙+1 − 𝑧𝑙 = ℱ𝑙 𝑧𝑙 ⟺ 𝑧𝑙+1 = 𝑧𝑙 + ℱ𝑙 𝑧𝑙

– Each layer (“residual block”) consists of a skip connection and a
parallel feed-forward transformation

– Advantage: no vanishing gradients even for very deep networks

15

residual block

He et al. “Deep residual learning for image recognition”, CVPR 2016.

ResNet-34

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

RevNets: Memory-efficient backpropagation

• Simple application of coupling layers: replace residual blocks with coupling blocks
– Do not store activations during the forward pass of training

– Recompute them on the fly during backpropagation, using the invertible architecture

16

Residual block Additive coupling block



becomes:

Gomez & Ren et al. “The Reversible Residual Network: Backpropagation Without Storing Activations”, NIPS 2017.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

RevNets: Memory-efficient backpropagation

• Simple application of coupling layers: replace residual blocks with coupling blocks
– Do not store activations during the forward pass of training

– Recompute them on the fly during backpropagation, using the invertible architecture

17

inverse pass

“isolated”
autodiffs

of G and F

forward pass

inverse pass

Gomez & Ren et al. “The Reversible Residual Network: Backpropagation Without Storing Activations”, NIPS 2017.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

RevNets: Memory-efficient backpropagation

• Performance example: ResNet-101 vs. RevNet-104 on ImageNet

• Very similar behavior:

– Trade-off: greatly reduces memory consumption
for 2-4 times the compute

18Gomez & Ren et al. “The Reversible Residual Network: Backpropagation Without Storing Activations”, NIPS 2017.

Top-1 classification error

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application: i-RIM 3D

• Allows training of very big nets: 3-dimensional convolutions, many layers
– fastMRI Challenge: MRI reconstruction from 8x less raw data

19Putzky & Welling “Invert to Learn to Invert”, NeurIPS 2019.

Target RIM i-RIM i-RIM 3D

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Making ResNets Invertible:
i-ResNets and Residual Flows

• Can one create an invertible network while keeping the original ResNet architecture?

– How to ensure a bijective mapping?

– How to compute the inverse efficiently?

– How to perform maximum likelihood training?

• The mapping is guaranteed to be bijective if
𝜕𝐱𝑡+1

𝜕𝐱𝑡
> 0

– Sufficient condition: Lipschitz bound on 𝑔𝜃𝑡: 𝑔𝜃𝑡 𝑥𝑡
1

− 𝑔𝜃𝑡 𝑥𝑡
2

≤ 𝜆 𝑥𝑡
1
− 𝑥𝑡

2
with 𝜆 < 1

Expressive power of each block is limited, need more blocks

Blocks can be inverted using fixed point iterations or Newton’s method:

20

forward pass

backward pass

Behrmann et al. “Invertible Residual Networks”, ICML 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Making ResNets Invertible:
i-ResNets and Residual Flows

• How to achieve the Lipschitz bound in a layer 𝑥𝑖+1 = 𝑥𝑖 + 𝜙(𝑊𝑥𝑖)?
– Step 1: normalize weight matrices

with 𝑐 < 1 and largest singular value ෥𝜎𝑖 ≤ 𝑊𝑖 2

estimated by (one iteration of) power method

– Step 2: use suitable activation functions: ∀𝑟: 𝜙′ 𝑟 ≤ 1

• fulfilled by many 𝜙(𝑟), but training involves the gradient of the log-determinant of the Jacobian (the
first derivative), i.e. the second derivative 𝜙′′ 𝑟

– Many common 𝜙(𝑟) have 𝜙′ 𝑟 ≈ 1 ⇒ 𝜙′′ 𝑟 ≈ 0, i.e. suffer from vanishing gradients

 Choose 𝜙 𝑟 = LipSwish 𝑟 = 0.909 𝑟/(1 + exp −𝛽 𝑟)

21
Gouk et al. “Regularisation of Neural Networks by Enforcing Lipschitz Continuity”, arXiv 2018.

Chen et al. “Residual Flows for Invertible Generative Modeling”, NeurIPS 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Making ResNets Invertible:
i-ResNets and Residual Flows

• Improvements of Residual Flow over i-ResNet apparent visually and in the numbers

23Chen et al. “Residual Flows for Invertible Generative Modeling”, NeurIPS 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application: Solving Inverse Problems

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Sources of Uncertainty in Machine Learning

Goal: given an unknown true data generating mechanism

find optimal approximation from a given model family ℱ

by minimizing a loss ℒ(𝑞, 𝑝∗) measuring the approximation error

Error sources for the deterministic case 𝑦 = 𝑔∗(𝑥)

• Model misspecification error: ℱ does not contain 𝑔∗

• Epistemic error: 𝑔∗ is only known via a finite random training set 𝒯𝒮

• Optimization error: numeric and algorithmic approximations

25

𝑦 ~ 𝑝∗ 𝑦 𝑥)

𝑞∗ 𝑦 | 𝑥 = argmin
𝑞∈ℱ

ℒ(𝑞, 𝑝∗)

𝑓∗ 𝑥 = argmin
𝑓∈ℱ

ℒ(𝑓, 𝑔∗) ≠ 𝑔∗(𝑥)

ሚ𝑓 𝑥 = argmin
𝑓∈ℱ

ℒ(𝑓, 𝒯𝒮) ≠ 𝑓∗(𝑥)

መ𝑓 𝑥 = algorithmicmin
𝑓∈ℱ

ℒ(𝑓, 𝒯𝒮) ≠ ሚ𝑓(𝑥)

now of lesser
concern thanks
to neural nets

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Sources of Uncertainty in Machine Learning

Additional error sources for the probabilistic case 𝑦 ~ 𝑝∗ 𝑦 𝑥)

• Aleatoric error: observations 𝑥 and mechanism 𝑝∗ are noisy

– classic ML: reduce to the deterministic case by defining

• Ambiguity error: 𝑥 does not contain enough information to fully recover 𝑦

– classic ML: reduce to the deterministic case by regularization term ℛ(𝑓)

• Bayesian statistics allow recovery of full posterior 𝑞∗ 𝑦 𝑥) ≈ 𝑝∗ 𝑦 𝑥), but

– classic parametric models often suffer from misspecification error

– non-parametric models are often expensive

Invertible neural networks offer great new possibilities!

26

𝑔∗ 𝑥 = 𝔼𝑦~𝑝∗ 𝑦 𝑥) 𝑦 | 𝑥 or 𝑔∗ 𝑥 = argmax
𝑦

𝑝∗ 𝑦 𝑥)

ሚ𝑓 𝑥 = argmin
𝑓∈ℱ

ℒ(𝑓, 𝒯𝒮) + 𝜆 ⋅ ℛ(𝑓)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Simulation-Based Inference for Inverse Problems

• Inverse problem goal: given observations ො𝑦, determine underlying hidden parameters ො𝑥

• In many inverse problems, the forward process is well understood…
– Differential equations

– Markov chains

– Monte-Carlo simulations

– …

… but inversion is still difficult:
– likelihood 𝑝 𝒚 𝒙) of observed data 𝒚 in Bayes formula

𝑝 𝒙 𝒚) =
𝑝 𝒚 𝒙) 𝑝(𝒙)

𝑝(𝒚)
is only implicitly defined by the simulation 𝒚 = 𝑔 𝒙; 𝝃

 likelihood cannot be evaluated, posterior is analytically intractable
“likelihood-free inference”

27

ൡ 𝒚 = 𝑔 𝒙; 𝝃 with 𝒙 the hidden parameters and 𝝃 a noise vector
(i.e. the random numbers used in the simulation)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Simulation-Based Inference

• Classical simplification: reduce posterior to point estimate
– Regularization: disambiguate inverse when forward process is surjective (not information preserving)

– Maximum a-posteriori (MAP) inference: find only mode of posterior

 No idea of solution diversity and uncertainty

• Standard solution: approximate Bayesian computation (ABC)
– Define a distance 𝑑(𝒚obs, 𝒚sim) between observed and simulated data

• for m=1,…, M:

Sample hidden parameters 𝒙(𝑚) ∼ 𝑝(𝒙) from prior

Run the simulation 𝒚sim
(𝑚)

= 𝑔(𝒙 𝑚 ; 𝝃)

Keep 𝒙(𝑚) if 𝑑 𝒚obs, 𝒚sim
𝒎

< 𝜖, reject otherwise

• Return the set of “surviving” 𝒙(𝑚) as an approximate sample from 𝑝 𝒙 𝒚𝐨𝐛𝐬)
 Very slow: high rejection rate, because small 𝜖 are needed for accurate results

• Case-based inference
– Efficient sampling methods (MCMC, SMC, …) with good proposal distribution have low rejection rates

 Learn a good proposal distribution for each observed data set 𝒚obs, i.e. on a per case basis

 Still expensive if many different 𝒚obs must be evaluated
28

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Linear Toy Example

• Forward process: given parameters 𝑥1, 𝑥2 ∼ 𝒩(0,1), observation 𝑦 arises according to
𝑦 = 𝑥1 + 𝑥2 = 𝑔(𝑥1, 𝑥2)

• Inverse 𝑥1, 𝑥2 = 𝑔−1(ො𝑦) for given observation ො𝑦 is undefined

– Classical regularization: minimum norm solution 𝑥1 = 𝑥2 =
ො𝑦

2
(disregards ambiguity!)

• Bayesian solution:
– Introduce latent variable 𝑧 = 𝑥1 − 𝑥2 ∼ 𝒩 0,2

– Reparametrize 𝑝 𝑥1, 𝑥2 ො𝑦) as 𝑥1, 𝑥2 = 𝑔aug
−1 ො𝑦, 𝑧 =

ො𝑦+𝑧(𝑡)

2
,
ො𝑦−𝑧(𝑡)

2

• For 𝑡 ∈ 1,… , 𝑇:

– Sample 𝑧(𝑡) ∼ 𝒩(0,2) and compute 𝑥1
(𝑡)

=
ො𝑦+𝑧(𝑡)

2
and 𝑥2

(𝑡)
=

ො𝑦−𝑧(𝑡)

2

• Return 𝑥1
𝑡
, 𝑥2

𝑡

𝑡=1

𝑇
as a sample from the Bayesian posterior 𝑝 𝑥1, 𝑥2 ො𝑦)

Generalize this to complex settings (non-linear 𝑔, noise, high dimensions) by INNs.
30

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application: Multispectral Endoscopy

Endoscopes for minimally invasive surgery

• can be equipped with a multispectral camera

• tissue state 𝑥 (e.g. blood oxygenation) affects the observed spectrum 𝑦

• Task: given spectrum, find posterior distribution of tissue state parameters

• Forward process 𝑠(𝑥) is implemented by Monte Carlo simulation

31

Clips

Ardizzone et al. “Analyzing inverse problems with invertible neural networks”, ICLR 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application: Multispectral Endoscopy

Invert the forward process 𝑠(𝑥) implemented by Monte Carlo simulation:
• training: INN learns 𝑦, 𝑧 = 𝑓𝜃 𝑥 ≈ 𝑠𝑎𝑢𝑔(𝑥) with 𝑝 𝑧 ~𝒩(0, 𝕀)

• inference: given observed spectrum ො𝑦, sample 𝑧𝑖~𝑝 𝑧 𝑖=1
𝑀 and

compute posterior sample 𝑥𝑖 = 𝑓𝜃
−1 ො𝑦, 𝑧𝑖 𝑖=1

𝑀
(independently for every pixel)

• determine mean and variance from 𝑥𝑖 − works especially well for blood oxygenation

32

𝑥 𝑦

Ardizzone et al. “Analyzing inverse problems with invertible neural networks”, ICLR 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application: Multispectral Endoscopy

Results
• INN performs well

• not all parameters
are identifiable

33

Oxygenation Volume fraction Mie scattering Tissue thickness Anisotropy

Ardizzone et al. “Analyzing inverse problems with invertible neural networks”, ICLR 2019.

Clips

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application: Multispectral Endoscopy

Results
• INN performs well

• not all parameters
are identifiable

• incorrect results
for other methods

– skewed distribut.
appear symmetric

– non-identifiable
parameters have
spurious mode

– correlation is
too weak or
too strong

34

Oxygenation Volume fraction Mie scattering Tissue thickness Anisotropy

Ardizzone et al. “Analyzing inverse problems with invertible neural networks”, ICLR 2019.

Clips

skewed unrecoverable correlation

symmetric overconfidence
independence

too much
correlation

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Experimental Design for Multispectral Endoscopy

Analysis of posteriors: Which camera should be used?

– 3 to 27 spectral channels

– Which gives reliable results
at best price and usability?

– posterior oxygen level histograms:

 camera with 8
channels offers
best trade-off
between price
and accuracy

multimodal
response good✓high

variance

27 spectral channels8 spectral channels3 spectral channels

35Adler et al. “Uncertainty-Aware Performance Assessment of Optical Imaging Modalities with Invertible Neural Networks”, IPCAI 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

INN Architecture for Endoscopy Application

• Forward process: given tissue parameters 𝑥, spectrum 𝑦 arises from MC simulation 𝑔
𝑦 = 𝑔(𝑥)

• Bayesian solution:
– Introduce latent variables 𝑧 collecting the information about 𝑥 that got lost in 𝑦 = 𝑔(𝑥)

𝑦, 𝑧 = 𝑔aug(𝑥)

– Train INN for 𝑔aug(𝑥) with 𝑝 𝑧 = 𝒩(0, 𝕀) and 𝑦 ⊥ 𝑧, using synthetic training data from the simulation

– Inference for real observation 𝑦obs:

• For 𝑡 ∈ 1,… , 𝑇:

– Sample 𝑧(𝑡) ∼ 𝒩(0, 𝕀)
– compute = 𝑥(𝑡) = 𝑔aug

−1 𝑦𝑜𝑏𝑠, 𝑧
(𝑡)

• Return 𝑥(𝑡)
𝑡=1

𝑇
as a sample from

Bayesian posterior 𝑝 𝑥 𝑦𝑜𝑏𝑠)

36

𝑔aug(𝑥)

𝑔aug
−1 (𝑦, 𝑧)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

INN Architectures for Inverse Bayesian Inference

Augmented latent space

training: 𝑦, 𝑧 = 𝑓𝜃(𝑥)

s.t. 𝑝 𝑧 = 𝒩(0, 𝕀)

inference: sample 𝑧 ∼𝒩(0, 𝕀)

compute 𝑥 = 𝑓𝜃
−1(ො𝑦, 𝑧)

 𝑥 ∼ 𝑝 𝑥 ො𝑦)

37

Latent mixture INN

training: 𝑧 = 𝑓𝜃(𝑥)

s.t. 𝑝 𝑧 = GMM 𝑧; 𝑦 = σ𝑦𝒩(𝜇𝑦, Σ𝑦)

inference: sample 𝑧 ~𝒩(𝜇 ො𝑦, 𝛴ො𝑦)

compute 𝑥 = 𝑓𝜃
−1(𝑧)

 𝑥 ∼ 𝑝 𝑥 ො𝑦)

Conditional INN

training: 𝑧 = 𝑓𝜃(𝑥; 𝑦)

s.t. 𝑝 𝑧 = 𝒩(0, 𝕀)

inference: sample 𝑧 ∼𝒩(0, 𝕀)

compute 𝑥 = 𝑓𝜃
−1(𝑧; ො𝑦)

 𝑥 ∼ 𝑝 𝑥 ො𝑦)

the original disentanglement simulation-based inference

=

Conditioned on 𝑦
𝑝(𝐳 | 𝐲)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Conditional INN (cINN)

Receive observation 𝑦 as

additional conditioning input

Training:

run cINN forward

Inference:

run cINN backward

38Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

cINN Architecture

Conditional coupling layers: simple generalization of standard coupling layers
• Coefficient networks 𝑠1,2, 𝑡1,2 get additional conditioning input 𝑦

• For fixed condition, coupling blocks are still invertible (since coefficient networks are never inverted)

• Computes 𝒛 = 𝑓(𝐱; 𝐲) and its inverse 𝐱 = 𝑓−1(𝒛; 𝐲)

39

𝑥 𝑧

condition

𝑦

Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

cINN Architecture

Conditional INN: sequence of conditional coupling layers
• If condition is complex (e.g. image): preprocessing via conditioning network 𝜙(𝐲) (= feature extraction)

• Computes 𝒛 = 𝑓(𝐱;𝝓(𝐲)) and its inverse 𝐱 = 𝑓−1(𝒛; 𝜙(𝐲))

40

Conditioning network

x z

y

φ

Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

cINN Training

Estimated conditional density Ƹ𝑝 𝑥 𝑦) expressed via ‘reparameterization trick’
• Let the cINN represent the function 𝑧 = 𝑓𝜃 𝑥 ; 𝑦 (now also dependent on 𝑦)

• Train cINN such that 𝑝𝑧 𝑧 ≈ 𝒩(0, 𝕀)

• Then Ƹ𝑝 𝑥 𝑦) ≈ 𝑝∗ 𝑥 | 𝑦 is defined by the change-of-variables formula

Can be trained with maximum likelihood loss as before:

෠𝜃 = argmin
𝜃

෍
𝑖∈𝒯𝒮

− log Ƹ𝑝 𝑥(𝑖) 𝑦(𝑖))

= argmin
𝜃

෍
𝑖∈𝒯𝒮

𝑓𝜃 𝑥(𝑖); 𝑦(𝑖)
2

2
−෍

𝑙=1

𝐿

ǁ𝑠𝑙 𝑥𝑙
(𝑖)
; 𝑦(𝑖)

Since 𝑓𝜃 is invertible (given ො𝑦), we get a generative model for free:

41

Ƹ𝑝 𝑥 𝑦) = 𝑝𝑧 𝑧 = 𝑓𝜃 𝑥 ; 𝑦 det
𝜕𝑓𝜃 𝑥 ; 𝑦

𝜕𝑥

𝑥 ~ Ƹ𝑝 𝑥 ො𝑦) ⇔ 𝑧 ~𝒩 0, 𝕀 and 𝑥 = 𝑓෡𝜃
−1(𝑧; ො𝑦)

Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow:
cINNs for Simulation-Based Inference

• Train an approximate posterior ෝ𝑝 𝒙 𝒚) ≈ 𝑝 𝒙 𝒚) that works for any ෝ𝒚 = 𝒚obs
– Expensive one-time (upfront) training of Ƹ𝑝 using simulated data

– Each inference query ෝ𝑝 𝒙 𝒚obs) (for different 𝒚obs) is then cheap

Training effort quickly amortizes over multiple cheap queries

• Can be elegantly realized with cINNs: BayesFlow
– Meta-algorithm:

• Repeat: (training phase)
– Simulate parameters 𝒙 ∼ 𝑝(𝒙)
– Run the simulation 𝒚sim = 𝑔(𝒙; 𝝃)
– Perform maximum likelihood training

of a cINN with (a batch of) (𝒙, 𝒚sim) pairs

Until convergence to ෝ𝑝 𝒙 𝒚sim)

• For each observation 𝒚obs: (inference phase)
– Use cINN to compute ෝ𝑝 𝒙 𝒚obs) or

create sample 𝒙𝒊 ∼ ෝ𝑝 𝒙 𝒚obs)

42Radev et al. “BayesFlow: Learning Complex Stochastic Models with Invertible Neural Networks”, arXiv 2020.

x

x

ysim
yobs

Training Inference

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow for Epidemiology:
Covid-19 Forward Model

• Forward model: SECIRD compartmental model (Lotka-Volterra type ODE system):

43

healthy, may get infected

symptom-free, cannot spread

undetected, can spread

ill, can spread healed, immune

1

𝛾
incubation period 𝛼 undetected fraction

1

𝜃
infectious period (asympt.)

1

𝜂
+
1

𝜇
infectious period (presympt. + ill)

𝜆(𝑡) infection rate
(can be intervened upon)

Radev et al. “Model-based Bayesian inference – an application to the COVID-19 pandemics in Germany”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow for Epidemiology:
Covid-19 Forward Model

• Forward model: Lotka-Volterra type ODE system, e.g. SECIRD:

44

healthy, may get infected

symptom-free, cannot spread

undetected, can spread

ill, can spread

healed, immune

dead

Radev et al. “Model-based Bayesian inference – an application to the COVID-19 pandemics in Germany”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Forward Model: Epidemic Calculator

45Goh: “Epidemic Calculator”, https://gabgoh.github.io/COVID/, 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow for Epidemiology:
Enhanced Covid-19 Forward Model

• Enhance realism
– Observation model: reporting delay, noise, weekly modulation

– Intervention model:
four intervals where countermeasures
were implemented or relaxed

– Total: 34 parameters with uninformative or very wide priors

– Forward simulation is easy: sample from prior, solve ODEs by Runge-Kutta

– Inverse: find parameter posteriors from observed time series of detected, dead, recovered cases.

46

𝜆(𝑡)

𝑡
𝑡1 𝑡1

′ 𝑡3 𝑡3
′𝑡2 𝑡2

′ 𝑡4 𝑡4
′

Radev et al. “Model-based Bayesian inference – an application to the COVID-19 pandemics in Germany”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow for Epidemiology:
The Networks

• Inference problem: observation sequence (IRD)  parameter posteriors
– Solve with BayesFlow network: cINN with statistical preprocessing networks for 𝑦

Convolutional:
• noise reduction

feature detection

Recurrent (LSTM):
• variable-length sequence

to fixed size summary

Invertible (cINN):
• posterior inference

– Training: end-to-end optimization of maximum likelihood loss with 50000-75000 simulations

47Radev et al. “Model-based Bayesian inference – an application to the COVID-19 pandemics in Germany”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow for Epidemiology:
Covid-19 Marginal Posteriors

Results: marginal posteriors for first wave in Germany (March – June 2020, 81 time steps)
• Fraction of infections remaining

undetected:
66% (median), 75% (mode)

• Serial interval: 9-10 days

• High likelihood to transmit
disease before diagnosis

• time to recovery:
4.6 days (undetected infections)
11.3 days (diagnosed cases)
(3.2 + 8.1 days before/after
diagnosis)

• often non-Gaussian behavior

Correspond well to clinical findings

48

Fraction of undetected infections:

uniform prior  peaked posterior

Radev et al. “Model-based Bayesian inference – an application to the COVID-19 pandemics in Germany”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow for Epidemiology:
Covid-19 Predictive Posteriors

• Results: predictive posteriors for first wave in Germany (March – June 2020, 81 time steps)

daily:

cumulated:

49

fit prediction

Radev et al. “Model-based Bayesian inference – an application to the COVID-19 pandemics in Germany”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow for Epidemiology:
Covid-19 Uncertainty Calibration

• Well-calibrated uncertainty quantification

Radev et al. “Model-based Bayesian inference – an application to the COVID-19 pandemics in Germany”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow for Epidemiology:
Covid-19 Amortized Inference

• Amortized inference: same model works for German states (no re-training)

51Radev et al. “Model-based Bayesian inference – an application to the COVID-19 pandemics in Germany”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application:
Stellar Parameters Prediction from Photometry

• Training with Stellar Evolution Model – PARSEC (Bressan et. al 2012)

– Forward problem: simulate spectral properties from stellar parameters (mass, age, metallicity,…)

– Inverse problem: infer stellar parameters from Hubble space telescope observations

• Results on Westerlund 2
young star forming cluster
– Observations: color magnitude

diagrams

– Parameters: age, initial and current
mass, luminosity, surface gravity,
effective temperature

– Well calibrated posteriors

– MAP estimates close to truth

– Physically plausible ambiguities:
same spectral signal for young/heavy
and older/lighter starts

52Ksoll et al. “Stellar Parameter Determination from Photometry using Invertible Neural Networks”, to appear: MNRAS, 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

More Application Examples

• ZW-production unfolding at the LHC

– can handle variable number of jets:

• Agent-based models in finance / economy

53
. Bellagente et al. “Invertible Networks or Partons to Detector and Back Again”, arXiv, 2020.

Shiono “Estimation of agent-based models using BayesFlow”, SSRN, 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application: Image-to-Image Translation

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

cINN for Image-to-Image Translation

• Example application: transform
daylight images to night images
– Condition 𝑦 is the daylight image

preprocess with a
feature-detection CNN

• Layers of the CNN compute

conditions 𝑐(𝑙) at different
resolutions / scales

– Invertible network turns
𝑝(𝑧) into 𝑝 𝑥 𝑦)

• Use multi-resolution features

𝑐(𝑙) in the coupling block of
corresponding resolution

 creates diverse night images 𝑥
for each 𝑦

55Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

cINN for Image-to-Image Translation

• Results:

56Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

Condition y
Day image

Generated x
Night images

Ground truth x
Night image

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

cINN for Image-to-Image Translation

• Results:

• Multi-scale features learned by the conditioning network:
– Level 1: edges and texture

– Level 2: foreground / background

– Level 3: populated areas (lights!)

57Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

Condition y
Day image

Generated x
Night images

Ground truth x
Night image

Day image Level 1 Level 2 Level 3

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

𝑦

Application: Colorization

• Inverse problem:
– given grayscale image 𝑦 (256 × 256,

L-channel in Lab color space)

– create realistic color channels
ො𝑥 = 𝑎, 𝑏 (64 × 64 × 2)

58Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

ො𝑝 𝑥 𝑦)

𝑦

Application: Colorization

• Inverse problem:
– given grayscale image 𝑦 (256 × 256,

L-channel in Lab color space)

– create realistic color channels
ො𝑥 = 𝑎, 𝑏 (64 × 64 × 2)

– which are diverse as 𝑧 is varied

– Quiz: Which color image is the
ground-truth?

59

𝑧 ∼ 𝑝𝑧(𝑧)

Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

ො𝑝 𝑥 𝑦)

𝑦

Application: Colorization

• Inverse problem:
– given grayscale image 𝑦 (256 × 256,

L-channel in Lab color space)

– create realistic color channels
ො𝑥 = 𝑎, 𝑏 (64 × 64 × 2)

– which are diverse as 𝑧 is varied

– Quiz: Which color image is the
ground-truth?

60

𝑧 ∼ 𝑝𝑧(𝑧)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

cINN Architecture for Colorization

• Four convolutional stacks (with four to six coupling layers)

• Fully connected stack as backend (eight coupling layers)

• Coupling layers separated by random orthogonal matrices to mix channels

• Large feature detection network ℎ (VGG), small conditioning networks ℎ𝑙

• Multi-scale decomposition via
Haar-Wavelet down-sampling
(standard max pooling not invertible)

61Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Colorization Examples

62Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Colorization: Meaningful Latent Manipulations

• Magnitude of latent vector encodes color intensity
– Linear interpolation from 𝑧 = 0 outwards gradually increases saturation

63Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Colorization: Meaningful Latent Manipulations

• Color transfer (in analogy to style transfer on MNIST)
– Combining 𝑦 from one image with true 𝑧 from another transfers colors

• Encode color image to latent space
• Keep color encoding, but exchange condition (=grayscale image), then decode

64Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application: Generative Classification

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Latent Mixture INN

• Structure latent space as a mixture of Gaussians instead of a single Gaussian
– Condition on class label y

• one mixture component per class
• for each class, learn mean and diagonal covariance matrix
• all classes share the same INN

66

=INN

Conditioned on 𝑦
𝑝(𝐳 | 𝐲)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs: Generative Classifiers

• What is a generative classifier (GC)?
– Classifier: given image 𝑥, predict label 𝑦 of most salient object

– A discriminative classifier (DC): learns the class posterior probability 𝑝(𝑦 | 𝑥)

– Generative classifier: instead learns the data likelihood 𝑝(𝑥 | 𝑦)
and computes the posterior indirectly by Bayes rule:

• Learning 𝑝(𝑥 | 𝑦) is a density estimation problem
– Normalizing flows are good at density estimation

– We actually model 𝑝 𝑧 𝑦 as a latent GMM
and train an INN to transform this into 𝑝(𝑥 | 𝑦)

– The model can be trained using the
Information Bottleneck Principle

67

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs: Generative Classifiers

68

Always sums to 1 over classes
Does not sum to 1

(integrates to 1 over all images)

• Generative classifiers recognize out-of-distribution examples:

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

The Information Bottleneck Principle

• Naively trained generative classifiers: poor classification accuracy in comparison to DCs
– Tend to overfit

• Information bottleneck principle overcomes this problem
– Introduce latent representation 𝑧, where all information flows through – “bottleneck”

– Latent variables 𝑧 should be: highly informative for 𝑦 (= good classification)
keep only as much information about 𝑥 as needed (= no overfitting)

• Minimize Information Bottleneck (IB) loss

with Mutual Information (MI)

69

Discriminative aspect
(maximize information

about class labels)

Generative aspect
(minimize spurious

information about x)
Trade-off parameter

Tishby et al. “The Information Bottleneck Method”, ACCCC 1999.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

The IB Objective for INNs

• Mutual information for an GMM can be calculated analytically:

𝐼 𝑦; 𝑧 = 𝔼𝑝(𝑦) − log 𝑝 (𝑦) + 𝔼𝑝(𝑦,𝑧) log
𝑝 𝑧 𝑦 𝑝(𝑦)

σ𝑦 𝑝 𝑧 𝑦 𝑝(𝑦)

• Mutual Information 𝐼(𝑥; 𝑧) is infinite, because INN is a bijection, i.e. information preserving
– Artificially introduce controlled information loss: 𝑧𝜖 = 𝑓INN(𝑥 + 𝜖) with noise 𝜖 ∼ 𝒩(0, 𝜎2𝕀), 𝜎 small

– Surprisingly, mutual information 𝐼(𝑥; 𝑧𝜖) reduces to the usual maximum likelihood loss

𝐼 𝑥; 𝑧𝜖 = 𝔼𝑝 𝑥 ,𝑝(𝜖) − log 𝑝 (𝑥 + 𝜖) = 𝔼𝑝 𝑥 ,𝑝(𝜖) − log 𝑝 𝑧𝜖 − log det 𝐽

• Intuitive effect:
– INN amplifies the noise to minimize 𝐼 𝑥; 𝑧𝜖
𝑥 is optimally compressed in latent space (like VAE)

Robust generative model thanks to lack of overfitting

Trade-off between generative and discriminative
performance by balancing 𝐼 𝑥; 𝑧𝜖 and 𝐼 𝑦; 𝑧

70

INN 𝑧𝜖 = 𝑓INN(𝑥 + 𝜖)

Ardizzone et al. “Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs:
Discriminative and Generative Performance

• Successfully trained on CIFAR-10 (10 classes) and ImageNet (1000 classes)

71
Ardizzone et al. “Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification”, arXiv 2020.

Mackowiak, Ardizzone et al. “Generative Classifiers as a Basis for Trustworthy Computer Vision”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs:
Benefits of GC (1): Interpretability

• Class separation improves as 𝛽 (= importance of 𝐼(𝑦; 𝑧)) increases
– CIFAR-10 examples (PCA projection of latent space)

72Ardizzone et al. “Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs:
Benefits of GC (1): Interpretability

• Pairwise distances between class centers reflect class similarity
– ImageNet examples

73Mackowiak, Ardizzone et al. “Generative Classifiers as a Basis for Trustworthy Computer Vision”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs:
Benefits of GC (1): Interpretability

• Heatmaps for attention area of most
probable classes
– ImageNet examples

– Back-project relevant latent features of
DCT pooling to image space regions

– Due to invertibility, this represents the
true decision process, not a post-hoc
explanation

74Mackowiak, Ardizzone et al. “Generative Classifiers as a Basis for Trustworthy Computer Vision”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs:
Benefits of GC (2): Out-of-Distribution Detection

• Outliers have low likelihood for every class

– Intuitively: can separate in-/outliers using
threshold on likelihood

– More advanced methods available

• Typicality test
• WAIC
• ...

– Many interesting open questions

75Mackowiak, Ardizzone et al. “Generative Classifiers as a Basis for Trustworthy Computer Vision”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs:
Benefits of GC (2): Out-of-Distribution Detection

• Outliers have low likelihood for every class
– Artificial outliers: scrambled colors (CIFAR-10 examples)

76

97% outlier
detection accuracy

Le
ar

n
ed

 lo
g-

p
ro

b
ab

ili
ty

Inlier images (test set) Same images, scrambled colors

Ardizzone et al. “Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs:
Benefits of GC (3): Uncertainty Calibration

• Calibration = consistency of confidence vs. actual performance
– If classifier is 90% confident about class label, it should be right 90% of the time, neither less nor more

– Problematic for discriminative classifiers [Guo et al. 2017] – IB-INNs are much better calibrated

77

GC: IB-INN β=1
(CIFAR-10)

Guo et al. “On calibration of modern neural networks”, ICML 2017.
Ardizzone et al. “Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification”, arXiv 2020.

DC: ResNet-18
(CIFAR-10)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Guaranteed disentanglement with Nonlinear ICA
and Incompressible Flows

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

What is Disentanglement?

• Latent dimensions should have one and only one isolated effect on the data

• 𝛽-VAE disentangles azimuth whereas VAE entangles it with other variables

79Higgins et al. “beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework”, ICLR 2017.

β-VAE VAE

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

ID-GAN

• Information-Distillation Generative Adversarial Network is probably state-of-the-art

• Combine VAE encoder with conditional GAN generator
– Works well on large images

(CelebA-HQ: 1024x1024)

– GAN conditioned on β-VAE
latent code

– Additional cycle constraint:
maximize mutual information
between latent codes of
real and fake images

80

azimuth

BG color

bang

Lee et al. “High-Fidelity Synthesis with Disentangled Representation”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

GLOW (again)

81

• Learns disentangled representations using a normalizing flow

• Try your own face:
openai.com/blog/glow/

less more

Kingma & Dhariwal “Glow: Generative flow with invertible 1x1 convolutions”, NIPS 2018.

https://openai.com/blog/glow/

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Disentanglement: Definition

82

• Definition by Bengio et al.:
– A disentangled representation has recovered the “informative factors of variation” in a dataset

– Disentangled latent features separate different categories of information (e.g. identity, pose
and background) into independent degrees of freedom

• Disentangled representations are interpretable by humans and
generalize well for downstream tasks and transfer learning

• Methods so far empirically work well, but have no theoretical guarantees

• We apply the theory of nonlinear ICA to INNs to derive such guarantees

Bengio et al. “Representation Learning: A Review and New Perspectives”, PAMI 2013.
Khemakhem et al. “Variational autoencoders and nonlinear ICA: A unifying framework”, AISTAT 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Recap: PCA (Principal Component Analysis)

83

• Classical method for unsupervised disentanglement with a linear transformation
– Finds uncorrelated basis vectors for multivariate Gaussian distributions

– Can be applied to non-Gaussian data, but cannot fully disentangle them

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

PCA as a Generative Model

84

• Rotate uncorrelated Gaussian in latent space into desired distribution in data space
– Special property of Gaussians: uncorrelated = statistically independent / factorial

Latent space
(uncorrelated gaussian)

Data space
(correlated gaussian)

Rotation

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

ICA as a Generative Model

85

• Roughly: Independent Component Analysis generalizes PCA to non-gaussian case
– Apply arbitrary invertible linear transformation to factorial non-Gaussian latent distribution

Latent space
(non-gaussian,
independent dimensions)

Data space

Invertible linear
transformation

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Nonlinear ICA as a Generative Model

86

• Replace the linear transformation with an invertible non-linear transformation

• Hyvärinen proved: generally unidentifiable (infinitely many possible solutions)

Invertible non-linear
transformation

Latent space
Data space

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

ICA as a Disentanglement Method

87

• Fundamental insight: we need to constrain transformations g in the latent space
– Constrain latent distributions by conditioning, e.g. by introducing a mixture distribution

Original latent space
(conditionally independent
dimensions)

Invertible nonlinear
transformation Alternative latent space

(orange distribution does not
have independent dimensions)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

ICA as a Disentanglement Method

88

• Fundamental insight: we need to constrain transformations g in the latent space
– Each additional condition constrains a degree of freedom

We can rotate around the axis through
the means and still have conditionally
independent distributions

After adding a third component, rotation
no longer preserves the distribution
(when means are in general position)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application to EMNIST

• Express complex changes of handwritten digits
as a combination of simple changes

• Identify intrinsic variables, which compactly
and intuitively explain variability

93

=

+

angle

pen width

Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020.

knee at 22 variablesno knee

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application to EMNIST

Width of bottom

Width of top

Height

Slant

Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020. 94

• First 8 latent variables
control global properties

(animations not visible

in PDF version)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application to EMNIST

95

Tail of 2

Extension to top right

Openness of lower loop

• First 8 latent variables
control global properties

• Following 14 control
local shape

(animations not visible

in PDF version)

Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application to EMNIST

Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020. 96

• First 8 latent variables
control global properties

• Following 14 control
local shape

• Remaining 762 have
no visible effect

Var. 1: upper width Var. 8: lower width Var. 3: height

Var. 13: top left of 2,3,7 Var. 16: tail of 2 Var. 23: no effect

difference images

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application to EMNIST

97Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020.

Latent space
interpolation

Independent effect
of first 8 most

significant latent
dimensions

(animations not visible

in PDF version)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Summary

Public code of our FrEIA library: https://github.com/VLL-HD/FrEIA

• INNs are very good density estimators:
– Not yet quite as good as GANs (as trained by the Big Guys with 300 GPUs in parallel ☺)

– But with much stronger mathematical interpretation and guarantees

– Successful applications in particle and astro-physics, epidemiology, medicine, psychology

• Three main approaches to incorporate additional information
– Conditional INN: learn 𝑝𝑧(𝐳 = 𝑓INN(𝐱; 𝐲))

– Latent mixture INN: learn 𝑝𝑧(𝐳 = 𝑓INN 𝐱 | 𝐲)

– Augmented latent space INN: learn 𝑝𝑦,𝑧(𝐲, 𝐳 = 𝑓INN 𝐱)

– We get the full posterior 𝑝 𝑥 𝑦), both exactly and through samples

• Future work:
– Improve architectures and training

– Strengthen validation and mathematical guarantees

– More applications in natural, social, and life sciences

– Better incorporation of prior knowledge from the application domain
98

https://github.com/VLL-HD/FrEIA

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Thanks to our team and collaborators!

Visual Learning Lab, Uni Heidelberg:

Lynton Ardizzone

Jakob Kruse

Jens Müller

Felix Draxler

Radek Mackowiak

Peter Sorrenson

Carsten Rother

York University, Canada:

Marcus Brubaker

German Cancer Research Center, Heidelberg:

Tim Adler, Sebastian Wirkert, Lena Maier-Hein

Depart. of Physics and Astronomy, Uni Heidelberg:

Victor Ksoll, Ralf Klessen

Anja Butter, Armand Rousselot, Tilman Plehn

Inst. for Environmental Physics, Uni Heidelberg:

André Butz, Florian Kleinicke

Psychologisches Institut, Uni Heidelberg:

Stefan Radev, Ulf Mertens, Andreas Voss 99

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

References

Adler, T., et al.: “Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks”,

Intl. J. Computer Assisted Radiology and Surgery 14(6):997–1007 (2019).

Ardizzone, L., et al.: “Analyzing inverse problems with invertible neural networks”, ICLR 2019, arXiv:1808.04730 (2018).

Ardizzone, L., Lüth, C., Kruse, J., Rother, C., & Köthe, U.: “Guided Image Generation with Conditional Invertible Neural
Networks”, arXiv:1907.02392 (2019).

Ardizzone, L., Mackowiak, R., Kruse, J., Rother, C., & Köthe, U.: “Training Normalizing Flows with the Information Bottleneck for
Competitive Generative Classification”, arXiv:2001.06448 (2020).

Behrmann, J., Duvenaud, D., & Jacobsen, J. H.: “Invertible residual networks”, ICML 2019, arXiv:1811.00995 (2018).

Bellagente, M. et al.: “Invertible Networks or Partons to Detector and Back Again”, arXiv:2006.06685 (2020).

Bengio, Y., et al.: “Representation Learning: A Review and New Perspectives”, IEEE PAMI 35(8):1798-1828 (2013).

Bloem-Reddy, B., & The, Y.W.: “Probabilistic symmetry and invariant neural networks”, JMLR 21(90):1−61(2020).

Chen, R., et al.: “Residual Flows for Invertible Generative Modelling”, NeurIPS (2019).

Dinh, L., Sohl-Dickstein, J., Bengio, S.: “Density estimation using Real NVP”, arXiv:1605.08803 (2016).

Gresele, L., et al.: “Relative gradient optimization of the Jacobian term”, ICML Workshop INNF+, arXiv:2006.15090 (2020).

Gomez, A., et al.: “The Reversible Residual Network: Backpropagation Without Storing Activations”, NIPS (2017).

Gouk, H., et al.: “Regularisation of Neural Networks by Enforcing Lipschitz Continuity”, arXiv:1804.04368 (2018).

Gretton, A., et al.: "A kernel two-sample test.“, JMLR 13:723-773, (2012).

Guo, Ch., et al.: “On calibration of modern neural networks”, ICML (2017).

100

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

References

He, K., et al.: “Deep residual learning for image recognition”, CVPR (2016).

Higgins, I., et al.: “beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework”, ICLR (2017).

Khemakhem, I., et al.: “Variational autoencoders and nonlinear ICA: A unifying framework”, AISTAT (2020).

Kingma, D., & Dhariwal, P.: “Glow: Generative flow with invertible 1x1 convolutions”, NIPS (2018).

Kruse, J., et al.: “Benchmarking Invertible Architectures on Inverse Problems”, ICML Workshop INNF (2019).

Ksoll, V. et al.: “Stellar Parameter Determination from Photometry using Invertible Neural Networks”, to appear in: MNRAS,
arXiv:2007.08391 (2020).

Lee, W., et al.: “High-Fidelity Synthesis with Disentangled Representation”, arXiv:2001.04296 (2020).

Mackowiak, R., Ardizzone, L. et al.: “Generative Classifiers as a Basis for Trustworthy Computer Vision”, arXiv:2007.15036 (2020).

Putzky, P., & Welling, M.: “Invert to Learn to Invert”, NeurIPS (2019).

Radev, S., et al.: “BayesFlow: Learning Complex Stochastic Models with Invertible Neural Networks”, arXiv:2003.06281 (2020).

Radev, S., et al.: “Model-based Bayesian inference – an application to the COVID-19 pandemics in Germany”, to appear (2020).

Shiono, T.: “Estimation of Agent-Based Models Using Bayesian Deep Learning Approach of BayesFlow”, SSRN:3640351 (2020).

Sorrenson, P., Rother, C., Köthe, U.: “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”,
ICLR 2020, arXiv:2001.04872 (2020).

Tishby, N., et al.: “The Information Bottleneck Method”, Allerton Conf. Communications, Control, Computing, arXiv:0004057
(1999).

101

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Non-linear Toy Example: Inverse Kinematics

Forward problem

• robot arm with 4 DOF: 𝑥 = [𝑥1, … , 𝑥4]
– 𝑥1: vertical position of first joint

– 𝑥2, 𝑥3, 𝑥4: joint angles

– Gaussian priors: 𝑥1 prefers the center

𝑥2, 𝑥3, 𝑥4 prefer to be straight

• observation: hand position 𝑦 = [𝑦1, 𝑦2]

• geometric arm simulation 𝑦 = 𝑔 𝑥
implicitly defines likelihood 𝑝 𝑦 𝑥)

102

prior distribution 𝑝(𝑥)

Ardizzone et al. “Analyzing inverse problems with invertible neural networks”, ICLR 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Non-linear Toy Example: Inverse Kinematics

Forward problem

• robot arm with 4 DOF: 𝑥 = [𝑥1, … , 𝑥4]
– 𝑥1: vertical position of first joint

– 𝑥2, 𝑥3, 𝑥4: joint angles

– Gaussian priors: 𝑥1 prefers the center

𝑥2, 𝑥3, 𝑥4 prefer to be straight

• observation: hand position 𝑦 = [𝑦1, 𝑦2]

• geometric arm simulation 𝑦 = 𝑔 𝑥
implicitly defines likelihood 𝑝 𝑦 𝑥)

INN infers posterior 𝑝 𝑥 ො𝑦) for given hand position ො𝑦
– For 𝑡 ∈ 1,… , 𝑇:

Sample 𝑧(𝑡) ∼ 𝒩(0, 𝕀) and compute 𝑥(𝑡) = 𝑓𝜃(ො𝑦, 𝑧
𝑡)

103

posterior distribution p∗ 𝑥| ො𝑦

Ardizzone et al. “Analyzing inverse problems with invertible neural networks”, ICLR 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Non-linear Toy Example: Inverse Kinematics

104

posterior distribution p∗ 𝑥| ො𝑦

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Comparison of Invertible Architectures
Kinematics Example

• Gound-truth posterior can be approximated with rejection sampling
(“Approximate Bayesian Computation” – ABC)

• Performance metrics:
– MMD between estimated and ground-truth posterior

– re-simulation error 𝑠 ො𝑥 − ො𝑦 2
2: where does 𝑠(ො𝑥) actually land?

105

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Comparison of Invertible Architectures
Kinematics Example

106Kruse et al. “Benchmarking Invertible Architectures on Inverse Problems”, INNF 2019.

