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Introduction
•In this school you have learned 

about several complex and large  
DL models (likely not the largest in  
the world but big enough…)  

•You have probably also learned  
that you can relatively efficiently  
and quickly train or evaluate  
them on GPUs
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•Relatively means that it depends 
a lot on your application 

•For some applications speed and 
efficiency are crucial and GPUs 
might not the best solution!
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The rise of specialized hardware
Recent industry trends towards developing new devices optimized for AI 

and speed up both training and inference

(V100)
https://

cloud.google.com/tpu/
Accelerating DNN with 

Xilinx FPGAs

Source

[batch=1]

https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/applications/megatrends/machine-learning.html
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The rise of specialized hardware
FPGAs and ASICs making their way into data centers as co-processors

Xilinx & Amazon Web Service  
Intel & Microsoft BrainWave  
Google cloud TPUs 
Xilinx & IBM cloud (CAPI)

Companies also provide toolkits to  
accelerate custom or standard  
DL models on FPGAs: 
Intel OpenVino, … 
Xilinx ML Suite, … 

Xilinx KUS FPGA 
5k DSPs 
1.4M logic cells 
1.3M FF 
80Mb BRAM

https://www.xilinx.com/support/university/aws-f1.html
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://cloud.google.com/tpu/
https://developer.ibm.com/linuxonpower/capi/
https://software.intel.com/en-us/openvino-toolkit
https://www.xilinx.com/applications/megatrends/machine-learning.html


•Today you will learn about hls4ml: a package for translating neural networks to 
FPGA firmware for inference with ultra low latency 

https://github.com/fastmachinelearning/hls4ml 

https://fastmachinelearning.org/hls4ml/ 

pip install hls4ml 

•Objectives: 

- Introduction on FPGA functionalities 

- Translate ML models into synthesizable FPGA code 

- Make your model inference computationally efficient and fast
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high level synthesis for machine learning

https://github.com/fastmachinelearning/hls4ml
https://fastmachinelearning.org/hls4ml/
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The project kicked off 4 years ago … 
  ̴10 people, mostly physicists (with little expertise in electronic engineering)

https://fastmachinelearning.org/
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Many more contributors and users now!



The origins: triggering @ (HL-) LHC
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Extreme collision frequency of 40 MHz → extreme data rates O(100 Tb/s) 
Most collision “events” don’t produce interesting physics 

“Triggering” = filter events to reduce data rates to manageable levels
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The typical LHC data flow
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The typical LHC data flow
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ML

ML applications you have seen at this  
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event reconstruction and identification, …
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ML

ML applications we’ll discuss today: 
 

how fast can we do a NN inference?
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ML

Main focus: deploy ML very early in the game 
Remember: events not surviving this stage won’t get a chance later on! 

Goal: improve our algorithms here!
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out: 100 KHz

Challenge: ultra low latency and scarse resources 

Most of it allocated by standard algorithms:  
•receive, calibrate, and sort calorimeter energy deposits over the whole detector  
•aggregate them to make physics objects (jets, electrons, taus, energy sums) 
•run track finders combining hits in muon stations

AMCs w/ 
MicroTCA 
backplane
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Challenge: ultra low latency and scarse resources 

Most of it allocated by standard algorithms:  
•receive, calibrate, and sort calorimeter energy deposits over the whole detector  
•aggregate them to make physics objects (jets, electrons, taus, energy sums) 
•run track finders combining hits in muon stations

AMCs w/ 
MicroTCA 
backplane

how to fit ML models here?
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What are FPGAs?
FPGA diagram

Machine learning algorithms are ubiquitous in HEP  

FPGA usage broad across HEP experiments 
Centered on DAQ and trigger development 

Some early adaptions of ML techniques in trigger [1] 

FPGA development becoming more accessible 

High Level Synthesis, OpenCL 

FPGA interest in industry is growing 
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Field Programmable Gate Arrays  
are reprogrammable integrated circuits

Contain many different building blocks 
(‘resources’) which are connected together as 
you desire
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What are FPGAs?
FPGA diagram

Logic cell

Flip-flop

Machine learning algorithms are ubiquitous in HEP  

FPGA usage broad across HEP experiments 
Centered on DAQ and trigger development 

Some early adaptions of ML techniques in trigger [1] 

FPGA development becoming more accessible 

High Level Synthesis, OpenCL 

FPGA interest in industry is growing 
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Look-up 
table
(logic) (registers)

Look Up Tables (LUTs) perform arbitrary  
functions on small bitwidth inputs (2-6 bits) 
→ used for boolean operations,  
arithmetics, memory

Flip-flops register data in time with the clock pulse

Field Programmable Gate Arrays  
are reprogrammable integrated circuits
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What are FPGAs?
FPGA diagram

Machine learning algorithms are ubiquitous in HEP  

FPGA usage broad across HEP experiments 
Centered on DAQ and trigger development 

Some early adaptions of ML techniques in trigger [1] 

FPGA development becoming more accessible 

High Level Synthesis, OpenCL 

FPGA interest in industry is growing 
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Also contain embedded components: 

Digital Signal Processors (DSPs): 
logic units used for multiplications 

DSPs are specialized units for multiplication 
and arithmetic 
→ faster and more efficient than LUTs for these 
type of operations 
→ for deep learning, they are often the most 
precious resource

Field Programmable Gate Arrays  
are reprogrammable integrated circuits
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What are FPGAs?
FPGA diagram

Machine learning algorithms are ubiquitous in HEP  

FPGA usage broad across HEP experiments 
Centered on DAQ and trigger development 

Some early adaptions of ML techniques in trigger [1] 
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High Level Synthesis, OpenCL 
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that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Also contain embedded components: 

Digital Signal Processors (DSPs): 
logic units used for multiplications 

Random-access memories (RAMs): 
embedded memory elements

Field Programmable Gate Arrays  
are reprogrammable integrated circuits

BRAMs are small, fast memories (ex, 18 Kb each) 

→ more efficient than LUTs when large memory is 
required 

Modern FPGAs have ∼100 Mb of BRAMs,  
chained together as needed
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What are FPGAs?
FPGA diagram

Machine learning algorithms are ubiquitous in HEP  

FPGA usage broad across HEP experiments 
Centered on DAQ and trigger development 

Some early adaptions of ML techniques in trigger [1] 

FPGA development becoming more accessible 

High Level Synthesis, OpenCL 

FPGA interest in industry is growing 
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Also contain embedded components: 

Digital Signal Processors (DSPs): 
logic units used for multiplications 

Random-access memories (RAMs): 
embedded memory elements

Field Programmable Gate Arrays  
are reprogrammable integrated circuits

Contain array of logic cells embedded with DSPs, 
BRAMs, etc. 

Support highly parallel algorithm implementation 

Low power per Op (relative to CPU/GPU)
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Why are FPGAs fast?
•Fine-grained / resource parallelism 

- use the many resources to work on different 
parts of the problem simultaneously 

- allows us to achieve low latency 

•Most problems have at least some 
sequential aspect, limiting how low latency 
we can go 

- but we can still take advantage of it 
with… 

•Pipeline parallelism 

- instruct the FPGA to work on different data 
simultaneously 

- allows us to achieve high throughput

Like a production line for data…
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How are FPGAs programmed?

Hardware Description Languages 

HDLs are programming languages which describe 
electronic circuits 

High Level Synthesis 

generate HDL from more common C/C++ code 

pre-processor directives and constraints used to 
optimize the timing 

drastic decrease in firmware development 
time! 

See Xilinx Vivado HLS, Intel HLS, Catapult HLS

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
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detector front end  
electronics

detector data

optical links

O(100) Xilinx FPGAs

in: 40 MHz 
out: 100 KHz

Challenge: ultra low latency and scarse resources 

Most of it allocated by standard algorithms:  
•receive, calibrate, and sort calorimeter energy deposits over the whole detector  
•aggregate them to make physics objects (jets, electrons, taus, energy sums) 
•run track finders combining hits in muon stations

AMCs w/ 
MicroTCA 
backplane

how to fit ML models here?
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Bring DL to FPGA for L1 trigger with

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.
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hls  4  ml

hls4ml

HLS  4  ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

https://hls-fpga-machine-learning.github.io/hls4ml/

high level synthesis for machine learning

arxiv.1804.06913
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https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913
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input layer

output layer

M hidden layers

N1

NM

layer m

Nm

activation function multiplication addition
precomputed and 
stored in BRAMs

DSPs logic cells

xn = gn(Wn,n�1xn�1 + bn)

16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax

Nmultiplications =
NX

n=2

Ln�1 ⇥ Ln

L1
Ln

LN

How many resources? 
DSPs, LUTs, FFs? 

Does the model fit in the 
latency requirements?
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Today you will learn how to optimize your project through: 

- compression: reduce number of synapses or neurons 

- quantization: reduces the precision of the calculations 
(inputs, weights, biases) 

- parallelization: tune how much to parallelize to make the 
inference faster/slower versus FPGA resources

FPGAs provide huge flexibility 
Performance depends on how well you take 
advantage of this

Constraints: 
Input bandwidth 
FPGA resources 
Latency 

NN training

FPGA project 

designing



Today’s hls4ml hands on
•Part 1: get started with hls4ml and train a basic model and run the conversion, 

simulation & c-synthesis steps 

notebook: part1_getting_started.ipynb 

•Part 2: learn how to tune inference performance with quantization and reuse factor 

notebook: part2_advanced_config.ipynb 

•Part 3: perform model compression and observe its effect on the FPGA resources/
latency 

notebook: part3_compression.ipynb 

•Part 4: train using QKeras “quantization aware training” and study impact on 
FPGA metrics 

notebook: part4_quantization.ipynb

25



Part 1: model conversion



Physics case: jet tagging
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Study a multi-classification task to be implemented on FPGA: discrimination 
between highly energetic (boosted) q, g, W, Z, t initiated jets

 top
other quarkZ W gluon

t→bW→bqq

3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq

2-prong jet 2-prong jet no substructure 
and/or mass ~ 0



Physics case: jet tagging
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 top other quarkZ W gluon

Input variables: several observables known to have high 
discrimination power from offline data analyses and  
published studies [*] 

[*] D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. 
JHEP05(2017)006, J. M. Butterworth et al. PhysRevLett.100.242001, etc..

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.112002
https://link.springer.com/article/10.1007/JHEP05(2017)006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.242001


Physics case: jet tagging
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• Fully connected neural network with 16 expert-level inputs: 

- Relu activation function for intermediate layers 

- Softmax activation function for output layer

AUC = area under ROC curve 
(100% is perfect, 20% is random)

better

• We’ll train the five class multi-classifier on a sample of  1̴M events  
with two boosted WW/ZZ/tt/qq/gg anti-kT jets 
[doi:10.5281/zenodo.3602254, OpenML]	

https://zenodo.org/record/3602254#.YEZhBOZMFp8
https://www.openml.org/d/42468


Setup
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• The interactive part is served with Python notebooks 

• Open https://cern.ch/ssummers/hls4ml-tutorial in your web browser 

• Authenticate with your Github account (login if necessary) 

• Open and start running through part1_getting_started.ipynb 

• If you’re new to Jupyter notebooks, select a cell and hit “shift + enter” to execute the code 

• If you have Vivado installed, you might prefer to work locally, see ‘conda’ section at: 
https://github.com/fastmachinelearning/hls4ml-tutorial 

https://cern.ch/ssummers/hls4ml-tutorial


Part 2: advanced configuration



Efficient NN design: quantization
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• In the FPGA we use fixed point representation 
− operations are integer ops, but we can represent 

fractional values 

• But we have to make sure we’ve used the correct data types!

Full performance 
at 6 integer bits

Scan integer bits 
Fractional bits fixed to 8

Scan fractional bits 
Integer bits fixed to 6

Full performance 
at 8 fractional bits

FP
G

A 
AU

C
 / 

Ex
pe

ct
ed

 A
U

C

FP
G

A 
AU

C
 / 

Ex
pe

ct
ed

 A
U

C



Efficient NN design: parallelization
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• Trade-off between latency and FPGA resource usage determined by the 
parallelization of the calculations in each layer 

• Configure the “reuse factor” = number of times a multiplier is used to do a 
computation

Reuse factor: how much to parallelize operations in a hidden layer

Fully parallel

Fully serial Fewer resources, 
Lower throughput, 
Higher latency

More resources, 
Higher throughput, 
Lower latency



Parallelization: DSPs
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Fully parallel 
Each mult. used 1x

Each mult. used 2x 

Each mult. used 3x 

…

Longer latency

More resources



Parallelization: Timing
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Fully parallel 
Each mult. used 1x

Each mult. used 3x 

Each mult. used 6x 

…

1̴75 ns 

7̴5 ns

…La
te

nc
y 

(c
lo

ck
 c

yc
le

s)

Longer latency

More resources

Latency of layer m



Large fully-connected NN
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• ‘Strategy: Resource’ for larger 
networks and higher reuse factor 

• Uses a slightly different HLS 
implementation of the dense layer to 
compile faster and better for large 
layers 

• Here, we use a different partitioning 
on the first layer for the best 
partitioning of arrays

IOType: io_parallel 
HLSConfig: 
  Model: 
    Precision: ap_fixed<16,6> 
    ReuseFactor: 128 
 Strategy: Resource 
LayerName: 
   dense1: 
     ReuseFactor: 112

This config is for a model trained on the MNIST digits classification dataset 
Architecture (fully connected): 784 → 128 → 128 → 128 → 10 
Model accuracy:  9̴7% 
We can work out how many DSPs this should use...



Large fully-connected NN
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• It takes a while to synthesise, so here’s one I made earlier… 

• The DSPs should be: (784 x 128) / 112 + (2 x 128 x 128 + 128 x 10) / 128 = 1162 🤞

============================
============================
+ Timing (ns): 
    * Summary: 
    +--------+-------+----------+------------+
    |  Clock | Target| Estimated| Uncertainty|
    +--------+-------+----------+------------+
    |ap_clk  |   5.00|     4.375|        0.62|
    +--------+-------+----------+------------+

+ Latency (clock cycles): 
    * Summary: 
    +-----+-----+-----+-----+----------+
    |  Latency  |  Interval | Pipeline |
    | min | max | min | max |   Type   |
    +-----+-----+-----+-----+----------+
    |  518|  522|  128|  128| dataflow |
    +-----+-----+-----+-----+----------+

=====================================
== Utilization Estimates
=====================================
+---------------------+---------+-------+---------+--------+
|         Name        | BRAM_18K| DSP48E|    FF   |   LUT  |
+---------------------+---------+-------+---------+--------+
...
+---------------------+---------+-------+---------+--------+
|Total                    |     1962|   1162|   169979|  222623|
+---------------------+---------+-------+---------+--------+
|Available SLR        |     2160|   2760|   663360|  331680|
+---------------------+---------+-------+---------+--------+
|Utilization SLR (%)  |       90|     42|       25|      67|
+---------------------+---------+-------+---------+--------+
|Available            |     4320|   5520|  1326720|  663360|
+---------------------+---------+-------+---------+--------+
|Utilization (%)      |       45|     21|       12|      33|
+---------------------+---------+-------+---------+--------+

II determined by the largest reuse factor



Part 3: compression



Efficient NN design: compression
•Neural Network compression is a widespread technique to reduce the size, energy 

consumption, and overtraining of deep neural networks 

•Several approaches in literature [arxiv.1510.00149, arxiv.1712.01312, arxiv.1405.3866, arxiv.1602.07576, 
doi:10.1145/1150402.1150464]  

•Today we will test the tensorflow model sparsity toolkit 
- https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html
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Main idea: 
iteratively remove low magnitude 
weights, starting with 0 sparsity, 
smoothly increasing up to the set 
target as training proceeds

https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/1405.3866
https://arxiv.org/abs/1602.07576
https://dl.acm.org/citation.cfm?doid=1150402.1150464
https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html


Efficient NN design: compression
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• DSPs (used for multiplication) are often 
limiting resource 

- maximum use when fully parallelized 

- DSPs have a max size for input (e.g. 
27x18 bits), so number of DSPs per 
multiplication changes with precision

Fully parallelized  
(max DSP use)

compression
Number of DSPs available



Part 4:  
quantization-aware training



Efficient NN design: quantization

•hls4ml allows you to use different data 
types everywhere, we saw how to tune that 
in part 2 

•In this part we will also try quantization-
aware training with QKeras [arxiv.2006.10159] 

•With quantization-aware we can even go 
down to just 1 or 2 bits [Mach. Learn.: Sci. Technol. 
2, 015001 (2020)]
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https://arxiv.org/abs/2006.10159
https://iopscience.iop.org/article/10.1088/2632-2153/aba042
https://iopscience.iop.org/article/10.1088/2632-2153/aba042


Efficient NN design with QKeras
•QKeras is a library developed and maintained by 

Google to train models with quantization in the 
training 

•Easy to use, drop-in replacements for Keras layers 

- e.g. Dense → QDense OR Conv2D → QConv2D 

- use quantizers to specify how many bits to use 
where with same kind of granularity as hls4ml 

•Can achieve good performance with very few bits 

•We’ve recently added support for QKeras-trained 
models to hls4ml 

- the number of bits used in training is also used in 
inference 

- the intermediate model is adjusted to capture all 
optimizations possible with QKeras
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Bonus: L1 trigger applications



hls4ml for triggering @ 40 MHz
•hls4ml enabled large development of new trigger algorithms with large gain for 

physics 

- replace standard cut-based algorithms

45

CMS Phase-2 L1 trigger  
upgrade TDR

NN VBF H→bb

https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf


hls4ml for triggering @ 40 MHz
•hls4ml enabled large development of new trigger algorithms with large gain for 

physics 

- replace standard cut-based algorithms 

- improve physics objects reconstruction  
(muons, taus, jets)
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36 INPUT FEATURES: 
ɸ,θ of track segments in muon stations 

track segment quality 
track segment curvature 

⬇ 

3 HIDDEN LAYERS (30x25x20) 
⬇ 

1 OUTPUT: muon pT CMS Phase-2 L1 trigger  
upgrade TDR

https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf


hls4ml for triggering @ 40 MHz
•hls4ml enabled large development of new trigger algorithms with large gain for 

physics 

- replace standard cut-based algorithms 

- improve physics objects reconstruction  
(muons, taus, jets) 

- develop new strategies like anomaly detection  
with autoencoders for signal-agnostic triggering
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21 inputs: pT/η/Φ of 4 e/𝛾, 4 μ, 
10 jets, and MET 

K. Govorkova @ Fast Machine Learning workshop 20

https://indico.cern.ch/event/924283/contributions/4105192/


hls4ml for triggering @ 40 MHz
•hls4ml enabled large development of new trigger algorithms with large gain for 

physics 

- replace standard cut-based algorithms 

- improve physics objects reconstruction  
(muons, taus, jets) 

- develop new strategies like anomaly detection  
with autoencoders for signal-agnostic triggering 

•Expected to see further developments thanks  
to the latest QKeras and AutoQ support 

- make the model small and accurate!
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CMS Phase-2 L1 trigger  
upgrade TDR

https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf


Bonus: 
further developments and features



hls4ml bonuses
•We have discussed the original motivations behind hls4ml: extreme low latency,  

high throughput domain as for LHC first-stage triggers 

•Since then, we have been expanding! 

- longer latency domains, larger models, resource constrained 
- different FPGA vendors (Xilinx, Intel, Mentor) 
- new applications, new architectures 

•While maintaining core characteristics: 

- HLS-based fully on-chip implementation 
- extremely configurable: precision, resource vs latency/throughput tradeoff 
- research project, application- and user-driven 
- accessible, easy to use
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hls4ml bonuses

hls4ml community is very active! 

•Boosted Decision Trees [JINST 15 P05026 (2020)] 

•Custom graph neural networks: 

- GarNet/GravNet for calorimeter reconstruction [arXiv: 2008.03601] 

- Interaction networks for tracking [arxiv.2012.01563] 

•Large convolutional neural networks 
[arxiv.2101.05108]
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https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05026
https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2012.01563
https://arxiv.org/abs/2101.05108


•New implementation based on streaming hls::stream<T> 

- collect data from input pixels until we can compute one output (FIFOs) 

- compute the value of output pixel with a single call to matrix-vector multiplication 

- can reuse existing matrix-vector multiplication used for fully connected layers

Fast convolutional neural networks

52



•New implementation based on streaming hls::stream<T> 

- collect data from input pixels until we can compute one output (FIFOs) 

- compute the value of output pixel with a single call to matrix-vector multiplication 

- can reuse existing matrix-vector multiplication used for fully connected layers

Fast convolutional neural networks
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Fast convolutional neural networks

53

Evaluate performance on  
street-view house numbers 
dataset (32x32x3)

no accuracy loss 
down to 4 bits

heterogeneously 
quantized model 
through bayesian 
optimization



Fast convolutional neural networks
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no accuracy loss 
down to 4 bits for 
Q/QP models

no accuracy loss 
down to 4 bits for 
Q/QP models

Max parallelization, i.e. reuse factor = 1



Fast convolutional neural networks
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̴ 5 μs inference time!

Max parallelization, i.e. reuse factor = 1



Bonus:  
Fast machine learning beyond L1 trigger



The need for fast ML
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• After trigger, 99.99975% of events are gone forever
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Computing time

100 ms 1 s1 ns 1 μs

latency constraint latency AND 
throughput constraint

throughput constraint

ML

Longer time → bigger models → coprocessors



Heterogenous computing
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These platforms based on CPU+FPGA co-processor 
system: offload a CPU from the 
computational heavy parts to a FPGA 
“accelerator” 

Common setup for FPGA connects  
to CPU through PCI-express

https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf 
https://www.xilinx.com/publications/events/machine-learning-live/colorado/xDNN_ML_Suite.pdf 

https://www.xilinx.com/applications/megatrends/machine-learning.html

Increased computational speed of 10x-100x 
Reduced system size of 10x 
Reduced power consumption of 10x-100x

(V100)

https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/publications/events/machine-learning-live/colorado/xDNN_ML_Suite.pdf
https://www.xilinx.com/applications/megatrends/machine-learning.html


Online reconstruction
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Example: CMS online reconstruction 1000 servers w/ 32 cores processing 
100K events per second  

(750K @ HL-LHC)

ECAL reconstruction 8%

HCAL reconstruction 16%

Full tracking  
and vertexing 

30% 
Speeding up tracking and calorimeter reconstruction  
crucial to increase throughput



Online reconstruction
•Large effort in the past years to rewrite parts of the reconstruction in CUDA for 

Nvidia GPUs 

- example for CMS:  
can offload 24% of  
the online reconstruction  
achieving up to x10  
higher throughput 

•Parallel effort to replace parts of the reconstruction with ML 

- minimize need to learn new processor-specific code → decrease effort, increase 
maintainability 

- must exploit co-processors to achieve highest throughput
60

See A. Bocci talk at CHEP19

https://indico.cern.ch/event/773049/contributions/3474336/attachments/1940557/3217478/Heterogeneous_online_reconstruction_at_CMS.pdf


Heterogenous computing @ LHC
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Heterogenous computing @ LHC
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MLaaS with SONIC
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MLaaS with SONIC
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The need for fast ML
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• After trigger, 99.99975% of events are gone forever

Computing time

100 ms 1 s1 ns 1 μs

latency constraint latency AND 
throughput constraint

throughput constraint

ML

ASICs typically used at the front end for sensors read out:  
directly embed ML in here to allow intelligent data compression before transmission
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Example: 
High-granularity calorimeter @ HL-LHC

Novel technology for CMS endcap calorimeter:  
52 layers with unprecedented number of readout channels!

CMS HGCAL TDR

http://home.fnal.gov/~chlebana/CMS/TDR-17-007-paper-v5.pdf


Example: CMS HG calorimeter
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What you have learned today
•Machine learning models are intrinsically parallelizable and can be executed 

efficiently on suitable hardware 

•Could replace our standard physics-inspired algorithms which are instead typically 
sequential 

•To gain from this potential down to ultra-low latency the hls4ml library was 
developed to translate your favourite ML model to an efficient FPGA implementation 

•We hope you have gained some experience with hls4ml 

- tutorial always available at https://cern.ch/ssummers/hls4ml-tutorial  

- or if you want to run locally https://github.com/fastmachinelearning/hls4ml-tutorial 
(need Vivado installation) 

•Stay tune for all new features at https://github.com/fastmachinelearning/hls4ml 

•And for fast machine learning updates beyond hls4ml check https://
fastmachinelearning.org/projects.html
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https://cern.ch/ssummers/hls4ml-tutorial
https://github.com/fastmachinelearning/hls4ml-tutorial
https://github.com/fastmachinelearning/hls4ml

