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* Relatively means that it depends
a lot on your application

* For some applications speed and
efficiency are crucial and GPUs
might not the best solution!




The rise of specialized hardware

Recent industry trends towards developing new devices optimized for Al
and speed up both training and inference

&
m @ ASICs

FLEXIBILITY EFFICIENCY

4x FasterthanGPUs  [batch=1]

XILINX “ : = - >
5 1 = Tensor Processing Un
(V100)

Accelerating DNN with hitps://
CPU < 20x > Xilinx FPGAs cloud.google.com/tpu/
0 1000 2000 3000 4000

Googlenet v1 Img/s Source


https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/applications/megatrends/machine-learning.html

The rise of specialized hardware

FPGAs and ASICs making their way into data centers as co-processors

FPGA Acceleration Using F1
Xilinx & Amazon Web Service -

Intel & Microsoft BrainWave T
Google cloud TPUs
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Companies also provide toolkits to
accelerate custom or standard
DL models on FPGAs:

Intel OpenVino, ...

Xilinx ML Suite, ...
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https://www.xilinx.com/support/university/aws-f1.html
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://cloud.google.com/tpu/
https://developer.ibm.com/linuxonpower/capi/
https://software.intel.com/en-us/openvino-toolkit
https://www.xilinx.com/applications/megatrends/machine-learning.html

high level synthesis for machine learning

* Today you will learn about hlsdml: a package for translating neural networks to
FPGA firmware for inference with ultra low latency

hitps://qgithub.com/fastmachinelearning/hls4ml

hitps://fastmachinelearning.org/hls4ml/

plp 1nstall hls4ml h I 4 I
* Objectives:

- Introduction on FPGA functionalities

- Translate ML models into synthesizable FPGA code

- Make your model inference computationally efficient and fast


https://github.com/fastmachinelearning/hls4ml
https://fastmachinelearning.org/hls4ml/

03 FAST MACHINE LEARNING LAB

ABOUT THE FAST ML LAB

Real-time and accelerated ML for fundamental sciences

Fast ML Lab is a research collective of physicists, engineers, and computer scientists
interested in deploying machine learning algorithms for unique and challenging scientific
applications. Our projects range from real-time, on-detector and low latency machine
learning applications to high-throughput heterogeneous computing big data challenges.
We are interested in deploying sophisticated machine learning algorithms to advance the
exploration of fundamental physics from the world's biggest colliders to the most intense

particle beams to the cosmos.

The project kicked off 4 years ago ...
~ 10 people, mostly physicists (with little expertise in electronic engineering)

https://fastmachinelearning.org/
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The origins: triggering @ (HL-) LHC

Extreme collision frequency of 40 MHz — extreme data rates O(100 Tb/s)
Most collision “events” don’t produce interesting physics
“Triggering” = filter events to reduce data rates to manageable levels




The typical LHC data flow
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The typical LHC data flow

99.75% events rejected!

Hardware based
Runs on FPGAs in
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The typical LHC data flow
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The typical LHC data flow
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The typical LHC data flow

Ry
XES
. S
99% events rejected! 049
99.75% events rejected! Software based /< Software based
Hardware based Runs on CPUs in real time Run on data centers
Runs on FPGAs in O(100 ms) latency (LHC grid)
| +i (s) computing time
real time 1 KHz

O(ps) latency 100 KHz

) 1 KHz
1 MB/evt 3-30 kB/ eVl Run by
40 MHz Hig.h-LeveI Offline mdividua’ls
trigger reconstruchon on the grid

L1 trigger M
@ Data volume —
A, C N
e
omputing time High-level
Information analysis

9



Ultra fast ML for triggering

100 KHz 1 KHz
Se-@..
1 MB/ev 3-30 kB/evt
40 MHx ‘ H|g.h-Leve| Offline . \
trigger reconstruction

L'I trigger

lomputing fime
High-level
analysis

ML applications you have seen at this
school these last days

We know it works here: jet identification, anomaly detection, objects or
event reconstruction and identification, ...
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Ultra fast ML for triggering

1 KHz

—

1 KHz
3-30 kB/evt

N\

1 MB/evt
High-Level Offline

trigger reconstruction
Computing time
High-level
1s analysis

ML applications we'll discuss today:

how fast can we do a NN inference?
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Ultra fast ML for triggering

-1 KHz

1 KHz

High-Level Offline
trigger reconstruction \
Computing time
High-level
100 ms ls analysis

Main focus: deploy ML very early in the game

Remember: events not surviving this stage won’t get a chance later on!
Goal: improve our algorithms here!
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The L1 trigger system

0(100) Xilinx FPGAS

i 40 MH=z
oubk: 100 KHz

detector daka

>

op&iaat Lindes

AMCs w/
MicroTCA
backplane

detector front end
electronics

Challenge: ultra low latency and scarse resources

Most of it allocated by standard algorithms:
*receive, calibrate, and sort calorimeter energy deposits over the whole detector
* aggregate them to make physics objects (jets, electrons, taus, energy sums)
* run track finders combining hits in muon stations

13



The L1 trigger system

0(100) Xilinx FPGAS

i 40 MH=z
oubk: 100 KHz
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op&iaat Lindes

A AMCs w/
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backplane
electronics
Challenge: ultra low latency and scarse resources
Most of it allocated |
*receive, calibrate how to fit ML models here? the whole detector
* aggregate them 1 , energy sums)

* run track finders compining nirs tn muon srarons
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What are FPGAs?

Field Programmable Gate AI"I"GYS FPGA diqgrqm
are reprogrammable integrated circuits

Contain many different building blocks
(‘resources’) which are connected together as

you desire

14



What are FPGAs?

Field Programmable Gate AI"I"CIYS FPGA diagrqm
are reprogrammable integrated circuits

Look Up Tables (LUTs) perform arbitrary
functions on small bitwidth inputs (2-6 bits)
— used for boolean operations,
arithmetics, memory

Flip-flops register data in time with the clock pulse

Logic cell

14 !
Inputs : LBF.JFUT D Hip j—' Out

FI
. Clock —»p> 7

Look-up
table

(logic)

Flip-flop

(registers)
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What are FPGAs?

Field Programmable Gate AI"I"CIYS FPGA diagrqm
are reprogrammable integrated circuits

DSPs are specialized units for multiplication
and arithmetic

— faster and more efficient than LUTs for these
type of operations

— for deep learning, they are often the most
precious resource

Also contain embedded components:

Digital Signal Processors (DSPs):
logic units used for multiplications

16



What are FPGAs?

Field Programmable Gate AI"I"CIYS FPGA diagrqm
are reprogrammable integrated circuits

BRAMs are small, fast memories (ex, 18 Kb each)

— more efficient than LUTs when large memory is
required

Modern FPGAs have ~100 Mb of BRAMs,

chained together as needed

Digital Signal Processors (DSPs):
logic units used for multiplications

Random-access memories (RAMs):
embedded memory elements

17



What are FPGAs?

Field Programmable Gate AI"I"CIYS FPGA diagrqm
are reprogrammable integrated circuits

Contain array of logic cells embedded with DSPs,
BRAM:s, efc.

Digital Signal Processors (DSPs):
logic units used for multiplications

Random-access memories (RAMs):
embedded memory elements

18



Why are FPGAs fast?

* Fine-grained / resource parallelism

- use the many resources to work on different
parts of the problem simultaneously

- allows us to achieve low latency

* Most problems have at least some 1 T
sequential aspect, limiting how low latency « SLEWE <
we can go ot B ,

- but we can still take advantage of it
with...
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S [ l'fo= \" LMl it v u,||

* Pipeline parallelism

Like a production line for data...

- instruct the FPGA to work on different data
simultaneously

- allows us to achieve high throughput

19



How are FPGAs programmed?

.. C, C++, Constraints/
Hardware Description Languages algorithm Directives

HDLs are programming languages which describe

electronic circuits
& XILINX. Vivado HLS ‘ p I

generate HDL from more common C/C++ code

High Level Synthesis

pre-processor directives and constraints used to

optimize the timing TSRS
drastic decrease in firmware development
timel

See Xilinx Vivado HLS, Intel HLS, Catapult HLS

20


https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/

The L1 trigger system

0(100) Xilinx FPGAS

i 40 MH=z
oubk: 100 KHz
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op&iaat Lindes
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detector front end MicroTCA
backplane
electronics
Challenge: ultra low latency and scarse resources
Most of it allocated |
*receive, calibrate how to fit ML models here? the whole detector
* aggregate them 1 , energy sums)

* run track finders compining nirs tn muon srarons
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Bring DL to FPGA for L1 trigger with
high level synthesis for machine learning

PYTHORCH

Vivardo i 7I7-7lLS
Keras
TensorFlow

PyTorch

l’o
*
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o
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Co-processing kernel

compressed

model — HLS —
conversion

Custom firmware
design

Usual ML J 7\
software workflow

\’rune configura’rion /
precision
reuse/pipeline
+ + — arxiv.1804.06913

Tensor

€ ONNX


https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913

Neural network inference

activation function multiplication addition

precomputed and

~
=

e eeen
N

stored in BRAMs DSPs logic cells
M hidden layers > O ----------------------------------
| 16 inputs |
8
> O 64 nodes
outputiaver How many resources?

DSPs, LUTs, FFs@
Does the model fit in the
latency requirements?

N
Nmultiplications — E Ln—l X Ln -
5 outputs

n=2 activation: SoftMax
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How to fit ML on one FPGAZ?

FPGAs provide huge flexibility Constraints:
Performance depends on how well you take Input bandwidth
advantage of this FPGA resources
Latency
Today you will learn how to optimize your project through: ®®@
P
- compression: reduce number of synapses or neurons W
. e . . S
- quantization: reduces the precision of the calculations @@@z@
(inputs, weights, biases) %@%\z%\@%&\

- parallelization: tune how much to parallelize to make the
inference faster/slower versus FPGA resources

24



Today’s hls4ml hands on

* Part 1: get started with hls4ml and train a basic model and run the conversion,
simulation & c-synthesis steps

notebook: partl getting started.ipynb

* Part 2: learn how to tune inference performance with quantization and reuse factor

notebook: part2 advanced config.ipynb

* Part 3: perform model compression and observe its effect on the FPGA resources/
latency

notebook: part3 compression.ipynb

* Part 4: train using QKeras “quantization aware training” and study impact on
FPGA metrics

notebook: partd4 quantization.ipynb

25
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Part 1: model conversion



Physics case: jet tagging

Study a multi-classification task to be implemented on FPGA: discrimination
between highly energetic (boosted) q, g, W, Z, t initiated jets

t—-bW-bqq Z-qq W-qq q/g background

3-prong jet 2-prong jet 2-prong jet no substructure
and/or mass = 0

Reconstructed as one massive jet with substructure

27



Physics case: jet tagging

. M. J— - |
0.05 1 ] 0.035 1 o — :
_ multiplicity g=g
0.06 4 0.025 -
2 = 2 0.020+
0.04 4 B
L 0.015 4
] J— 0.010 4
0.02 |
T L 0.005 -
JY . L \7_
0.00 ; -*ﬁIL~| — — 0.000 * T ~ v - - -
100 125 150 175 200 0 20 40 60 80 100 120 140
Mot Multiplicity
° ° MmMDT
Input variables: several observables known to have high NE-12
° ° ° ° ° B=1,2
discrimination power from offline data analyses and fﬂzzo,l,z
published studies [ ] op=12
D25’=1,2
D(a,,B)i(l,l),(l,Z)
[*] D. Guest at al. PhysRevD.24.112002, G. Kasieczka et al. 2Zzlogz
JHEPO5(2017)006, J. M. Butterworth et al. PhysRevLett.100.242001, etc.. Multiplicity
28



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.112002
https://link.springer.com/article/10.1007/JHEP05(2017)006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.242001

Physics case: jet tagging

* We'll train the five class multi-classifier on a sample of ~1M events
with two boosted WW/ZZ/tt/qq/gg anti-kr jets
[doi:10.5281/zenodo.3602254, OpenML]

Tensor

* Fully connected neural network with 16 expert-level inputs:

- Relu activation function for intermediate layers
16 inputs
- Softmax activation function for output layer 8
64 nodes
activation: ReLLU
his4aml 8
1009 -
] — g tagger, AUC = 93.8% 3L nodes
| — atagger, AUC = 90.4% activation: ReLLU
| —— w tagger, AUC = 94.6%
| —— ztagger, AUC = 93.9% 8
. —— ttagger, AUC = 95.8% 32 nodes
g 107 activation: ReLU
£ 8
g 5 outputs
g, activation: SoftMax
§ 1072
better
AUC = area under ROC curve
1073

- - - - " - (100% is perfect, 20% is random)

Signal Efficiency



https://zenodo.org/record/3602254#.YEZhBOZMFp8
https://www.openml.org/d/42468

Setup

* The interactive part is served with Python notebooks

* Open https://cern.ch/ssummers/hls4ml-tutorial in your web browser

* Authenticate with your Github account (login if necessary)
* Open and start running through partl getting started.ipynb
* If you're new to Jupyter notebooks, select a cell and hit “shift + enter” to execute the code

* If you have Vivado installed, you might prefer to work locally, see ‘conda’ section at:
hitps://github.com/fastmachinelearning/hls4ml-tutorial

& Jupyter Quit Logout

Files Running Clusters

Select items to perform actions on them. Upload |New~ &

0 ~ W/ Name ¥ Last Modified File size

mages 22 minutes ago

m [

partl_getting_started.ipynb 22 minutes ago 10.8 kB
& part2_advanced_config.ipynb 22 minutes ago 137 kB
& part3_compression.ipynb 22 minutes ago 10.1 kB
part4_quantization.ipynb 22 minutes ago 13.2kB

22 minutes ago 4.04 kB

callbacks.py

) [J W

plotting.py 22 minutes ago 5.96 kB


https://cern.ch/ssummers/hls4ml-tutorial

his 4 ml

Part 2: advanced configuration



ap_fixed<width bits, integer bits>

0101.1011101010

Efficient NN design: quantization

- . v 4
Integer

fractional

width

* In the FPGA we use fixed point representation

- operations are integer ops, but we can represent
fractional values

* But we have to make sure we’ve used the correct data types!

Scan integer bits
Fractional bits fixed to 8

his4ml

1.1
O
-
< 107
O
D o9-
@)
Q s Full performance
x ® °
I at 6 integer bits
~ 07
S

0.6 —a— g tagger
<E —u— ( tagger
< 05 —a— W tagger
Q) ' —s— 7 tagger
0 —=— t tagger
L 0.4

<10,2> <15,7> <20,12> <25,17> <30,22> <35,27> <40,32>
Fixed-point precision

FPGA AUC / Expected AUC

1.1

1.0 A

0.9 1

0.8 1

0.7 -

0.6 1

0.5 A

0.4

his4ml

Scan fractional bits
Integer bits fixed to 6

Full performance

at 8 fractional bits

>

——
—

—

g tagger
q tagger

w tagger

z tagger
t tagger

<8,6> <13,6> <18,6> <23,6> <28,6> <33,6> <38,6>

Fixed-point precision

J4



Efficient NN design: parallelization

* Trade-off between latency and FPGA resource usage determined by the
parallelization of the calculations in each layer

* Configure the “reuse factor” = number of times a multiplier is used to do a
computation

. A Fewer resources,
Fully serial
| oS — 4 Lower throughput,
use 1 multiplier 4 times Higher |Cli'enCY

reuse = 2
use 2 multipliers 2 times eac

reuse = 1

use 4 multipliers 1 time each
More resources,

Fully parallel Higher throughput,
V1 Lower latency

Reuse factor: how much to parallelize operations in a hidden layer 33



Parallelization:

1e3 his4ml 3-layer pruned, Kintex Ultrascale
—#— Reuse Factor =1
6 1 -
—m— Reuse Factor = 2 Max DSP
e == REUSE FACIOr = 3 mm o o o o o o o o o o o o o e o ——
5 —#— Reuse Factor =4
—#— Reuse Factor =5 - —
—#— Reuse Factor = 6
4 -
3 -
o i i T o T
2 -
i i i g 5 |
i i i L L ./l—l'
11 - 2
O * I I 1 1
<8,6> <16,6> <24,6> <32,6> <40,6>

Fixed-point precision

DSPs

More resources

Fully parallel 4

Each mult. used 1x

Each mult. used 2x

Each mult. used 3x

v
Longer latency

34



Parallelization: Timing

Latency of layer m

Lm — Lmult + (R — 1) X 1 Imult + Lactiv

his4dml 3-layer pruned, Kintex Ultrascale
504 T Reuse Factor =1
—u— Reuse Factor = 2
) —=— Reuse Factor = 3
L) —=— Reuse Factor = 4 ~ ‘I 75 ns
g 40 1 —=— Reuse Factor =5
% —&— Reuse Factor = 6 — . g
L L L i |
2 30 - ———
3 -———a—a T
§ - g g ——a—a
3 20 1 - D
i =
3 I ./I—I/.
10 ~/5 ns
0 1 1 1 1 1
<8,6> <16,6> <24,6> <32,6> <40,6>

Fixed-point precision

Longer latency

Each mult. used 6x

Each mult. used 3x

Fully parallel
Each mult. used 1x

\4

More resources
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Large fully-connected NN

* ‘Strategy: Resource’ for larger

networks and higher reuse factor
I0Type: 1o_parallel

* Uses a slightly different HLS HLSConfig:
. . Model:
implementation of the dense layer to

. Precision: ap_fixed<1l6,6>
compile faster and better for large ReuseFactor: 128

layers Strategy: Resource
. o LayerName:
* Here, we use a different partitioning densel:
on the first layer for the best ReuseFactor: 112

partitioning of arrays

This config is for a model trained on the MNIST digits classification dataset
Architecture (fully connected): 784 — 128 — 128 - 128 = 10

Model accuracy:~97%

We can work out how many DSPs this should use...

36



Large fully-connected NN

* It takes a while to synthesise, so here’s one | made earlier...

i

* The DSPs should be: (784 x 128) / 112 + (2 x 128 x 128 + 128 x 10) / 128 = 1162

A 4

+ Timing (ns): == Utilization Estimates
* Summary:
+-—-———-- f--———-- i e ataiaiaiats + Fomm e m s m e m oo tommmmmm - +------- f--mmmm - t---mm—-- +
| Clock | Targetl| Estimated!| Uncertaintyl | Name | BRAM_18K| DSP48E | FF | LUT |
R R - ————— - ——————— + +--—-—— === +--—-——----- +-—-———-- +----—---—- +-—-—-——--- +
lap_clk | 5.00] 4.375] 0.62
P I o mmmmmm oo o e + Hommmmmmmmmmm oo Ho—mmmm oo e e e +ommm - +
| Total | 1962 1699791 222623
Lat lock cycles): N Fommmm T TN T oo +
R (clock cycles) |Available SLR | 21601 27601 663360! 331680
ummary :
+----- +----- +----- +-——=- i + P R S R T ________ T
. |Utilization SLR (%) | 90| 42| 25 67
| Latency | Interval | Pipeline | +__}_1f?_t?? _____ Sf?__+ _________ e e e N
| -min | max | min | max | Type | |Available | 43201 55201 13267201 663360
+----- +----- +----- +-——=- i + o PR PR PR e +
| 5181 5221 1281 1281 dataflow | |Utilization (%) | 45| 211 12 33|
+-—---- +---y—-4+----- +-=-=--- +-—-—-—————— + e — - - - - - +

Il determined by the largest reuse factor
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Efficient NN design: compression

* Neural Network compression is a widespread technique to reduce the size, energy
consumption, and overtraining of deep neural networks

* Several approaches in literature [arxiv.1510.00149, arxiv.1712.01312, arxiv.1405.3866, arxiv.1602.07576,
doi:10.1145/1150402.1150464]

* Today we will test the tensorflow model sparsity toolkit

- htips://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

1.0

10x

Main idea:

iteratively remove low magnitude
weights, starting with O sparsity,
smoothly increasing up to the set
target as training proceeds

Sparsity

0 20 40 60 80 100
Pruning step
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https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/1405.3866
https://arxiv.org/abs/1602.07576
https://dl.acm.org/citation.cfm?doid=1150402.1150464
https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

Efficient NN design: compression

before pruning after pruning

pruning
synapses

leq hls4ml Reuse factor = 1, Kintex Ultrascale T

3.04 —=— Full model

Pruned model Fully parallelized
25 (max DSP use)

pruning
neurons

-—->

2.0 1

8 15-
Lol compression ® DSPs (used for multiplication) are often
Number of DSPs availabl ||m|hng resource
e r I A, AN
o - maximum use when fully parallelized

<8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision

- DSPs have a max size for input (e.g.
27x18 bits), so number of DSPs per
multiplication changes with precision
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Part 4:
quantization-aware training



Efficient NN design: quantization

* hls4ml allows you to use different data
types everywhere, we saw how to tune that
in part 2

* In this part we will also try quantization-
aware training with QKeras [arxiv.2006.10159]

* With quantization-aware we can even go

dOWI‘l to iUSi‘ 1 or 2 bits [Mach. Learn.: Sci. Technol.
2,015001 (2020)]

Background Efficiency

10°

107!

1073

his4ml

Heee g tagger, AUC = 92.4%

- g tagger, AUC = 92.4%
g tagger, AUC = 89.0%

-t tagger, AUC = 95.4%
- W tagger, AUC = 94 4%
- Z tagger, AUC = 93.3%
-= g tagger, AUC = 92.8%
g tagger, AUC = 89.5%

-= ttagger, AUC = 95.6%
-= w tagger, AUC = 94 8%
-~ ztagger, AUC = 94.0%

g tagger, AUC = 89.0%
----- t tagger, AUC = 95.4%
----- w tagger, AUC = 94 4%
z tagger, AUC = 93.2%

{ i .
0.0 02 0.4 0.6 0.8
Signal Efficiency

10
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https://arxiv.org/abs/2006.10159
https://iopscience.iop.org/article/10.1088/2632-2153/aba042
https://iopscience.iop.org/article/10.1088/2632-2153/aba042

Efficient NN design with QKeras

* QKeras is a library developed and maintained by
Google to train models with quantization in the

training
* Easy to use, drop-in replacements for Keras layers

- e.g. Dense = QDense OR Conv2D = QConv2D

- use quantizers to specify how many bits to use
where with same kind of granularity as hls4ml

* Can achieve good performance with very few bits

* We've recently added support for QKeras-trained
models to hls4ml

- the number of bits used in training is also used in
inference

- the intermediate model is adjusted to capture all
optimizations possible with QKeras

Ratio Model Accuracy / Baseline Accuracy

Bitwidth

1.04 4 — QKeras CPU
—— (JKeras FPGA
= = Post-train quant.
1.02 +
1.00 4 ——— [
' +
/
_ 0.98 4 ’/ I
' L 2
0.96 - ,'
|
Q4 - |
0.94 '
|
0.92 4 "
|
0.90 ' —_— ——r
5 10 15 B BPBHQO
Bitwidth
50 A
40 -
> 30
&
= R
'§ 20 4
Z
o4
10 4
0
Gl
0 - +0%¢
1 L] I 1 L T 1 L T 1] L]
4 6 8 10 12 14 16 B BP BHQO
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Bonus: L1 trigger applications



Signal Eff.

* hls4ml enabled large development of new trigger algorithms with large gain for

hls4ml for triggering @ 40 MHz

physics

0.3

0.2

0.1

0

- replace standard cut-based algorithms

CMS Phase-2 Simulation 14 TeV, 200 PU

Inclusive MET

Inclusive VBF

Inclusive Total (MET OR VBF)
Cut Based VBF H—Inv.
—e— DNN VBF H—Inv.

* [ D> op

IIIIIIIllllllllllllllllllll

lllIIIIIIlIIII|IIII|IIII|IIII|IIII|IIII|IIII|I

0 10 20 30 40 50 60 70 80 90

Rate (kHz)

CMS Phase-2 L1 trigger

CMS Phase-2 Simulation 14 TeV, 200 PU
W og
g or Inclusive 1-Jet
.UQ)" 0.8 O Inclusive 2-Jet
AN Inclusive HT
0.7 pie Inclusive VBF
] Inclusive Total (1-Jet OR 2-Jet OR HT OR VBF)
0.6 DNN VBF H—bb

IIIIIIIIIIIIIIIIIII]llllllllllllllllllllll

olIIIIIIIIIIIIII|l|l|l|l||l|||l||||l|l|I

0O 20 40 60 80 100 120 140 160 180
Rate (kHz)

upgrade TDR

NN VBF H—bb

Latency

DSP48E

FF

LUT

Usage

24 clkk @
200MHz

5

484

32634

62358

Percentage

8%
2%

9%
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https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf

hls4ml for triggering @ 40 MHz

* hls4ml enabled large development of new trigger algorithms with large gain for

physics
- replace standard cut-based algorithms

- improve physics objects reconstruction
(muons, taus, jets)

Rate [kHz]

36 INPUT FEATURES:
¢,0 of track segments in muon stations
track segment quality
track segment curvature

4

3 HIDDEN LAYERS (30x25x20)
\ 4

1 OUTPUT: muon pr

CMS Phase-2 Simulation 14 TeV
LI LI L LB LN N BLELNLNLEY LB
L1 Muon pT>20 GeV
o EMTF
100_ ........... G EMTF++ ................................... + .......... —
¢
50 o x2.5 rate -
l reduction ]
[ ] ®. .-
. ""
0 50 100 150 200 250 300 350

PU

CMS Phase-2 L1 trigger

upgrade TDR
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https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf

hls4ml for triggering @ 40 MHz

* hls4ml enabled large development of new trigger algorithms with large gain for

physics
- replace standard cut-based algorithms

- improve physics objects reconstruction
(muons, taus, jets)

- develop new strategies like anomaly detection
with autoencoders for signal-agnostic triggering

21 inputs: pr/n/® of 4 e/y, 4 |,
10 jets, and MET

X(-,21)

Encoder h1( -, 50)

Encoder h2 ( -, 50)

z(-,4)

Decoder h1( -, 50)

Decoder h2 ( -, 50)

X(-,21)

K. Govorkova @ Fast Machine Learning workshop 20
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https://indico.cern.ch/event/924283/contributions/4105192/

hls4ml for triggering @ 40 MHz

* hls4ml enabled large development of new trigger algorithms with large gain for
physics

CERN European Organization for Nuclear Research CERN-LHCC-2020-004
CMS-TDR-021

Organisation européenne pour la recherche nucléaire 10 March 2020

- improve physics objects reconstruction M S

(muons, taus, jets) e

- replace standard cut-based algorithms

- develop new strategies like anomaly detection
with autoencoders for signal-agnostic triggering

* Expected to see further developments thanks
to the latest QKeras and AutoQ support

- make the model small and accuratel

CMS Phase-2 L1 trigger
upgrade TDR

X # W\M@“?V ﬁ . .]1’( »"m'.;
The Phase-2 Upgrade of the

CMS Level-1 Trigger
Technical Design Report
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https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf
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Bonus:
further developments and features



his4ml bonuses

* We have discussed the original motivations behind hls4ml: extreme low latency,
high throughput domain as for LHC first-stage triggers

* Since then, we have been expanding!

- longer latency domains, larger models, resource constrained
- different FPGA vendors (Xilinx, Intel, Mentor)

- new applications, new architectures

* While maintaining core characteristics:

- HLS-based fully on-chip implementation
- extremely configurable: precision, resource vs latency/throughput tradeoff

- research project, application- and user-driven

- accessible, easy to use
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his4ml bonuses

hls4ml community is very active!

e Boosted Decision Trees [JINST 15 P05026 (2020)]

e Custom graph neural networks:

- GarNet/GravNet for calorimeter reconstruction [arXiv: 2008.03601]

- Interaction networks for tracking [arxiv.2012.01563]

e Large convolutional neural networks
[arxiv.2101.05108]

(2)

Frr

Root node

Right child
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https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05026
https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2012.01563
https://arxiv.org/abs/2101.05108

Fast convolutional neural networks

* New implementation based on streaming hls: :stream<T>
- collect data from input pixels until we can compute one output (FIFOs)
- compute the value of output pixel with a single call to matrix-vector multiplication

- can reuse existing matrix-vector multiplication used for fully connected layers

Stream in Pixel

¢ 1[2]3

NN
o
(=2}

v

<«

Buffer that is filt heightxfilt width

*

Lo] [=] (R[] [« (2] [] (][]
pr— g— — (— (— — — (— (—
prd e et e p pr Sy p— p—
— ] — b — }— }—
— ———r—r———
prd B e v b ] ] f— —
—_— e —_— —  —
prd ] o v v B r— f— p—

Our usual dense layer code

P Bl bl bl Pl Bl Bl i Y
— —{ ]
prd P Jrnd bnd brd B rd  prd  pr—
bt Sd b hd Sd S W W

With all bells and whistles

¥

Buffer (N features out)

Stream out pixel by pixel



Fast convolutional neural networks

* New implementation based on streaming hls: :stream<T>
- collect data from input pixels until we can compute one output (FIFOs)
- compute the value of output pixel with a single call to matrix-vector multiplication

- can reuse existing matrix-vector multiplication used for fully connected layers

Stream in Pixel
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o
(=2}

v

<«

Buffer that is filt heightxfilt width

*
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Fast convolutional neural networks

Input: Block 1:

32x32x3 Conv 0 (f=16, k=3)
Max Pooling (2,2)
Batch Norm.
RelLU

Evaluate performance on
street-view house numbers

dataset (32x32x3)

Conv 1 (f=16, k=3)
Max Pooling (2,2)
Batch Norm.

Accuracy

1.1

o
©

o
©

0.7

0.6

1.0

Block 3:
Conv 2 (f=24, k=3)
Max Pooling (2,2)
Batch Norm.

RelLU

Flatten (96) Block 4: Block 5: Output:
Dense 0 (n=42] Dense 1 (n=64]) Dense output (n=10]
Batch Norm. Batch Norm. Softmax
RelLU RelLU

—

! ! ! [ | | | [ [ [
I hIS 4 ml 10-fold cross-validaton
— —_ — lE= == = E=—1 = —— ]
o —
(
- i no accuracy loss )
j : down to 4 bits
o i—> i
L :
I . Full
] B Pruned (50%) B
= | | I | | | | | | | | ]
B T 3 4 6 8 10 12 14 16 AQ/ BF/
AQP BP

Ve

Softmax

heterogeneously
quantized model
through bayesian
optimization
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DSP consumption [%)]

100

0
o

Fast convolutional neural networks

Max parallelization, i.e. reuse factor = 1

I I [ [
| e BF

—A— BP

¢ AQ
AQP

H — /]
: - E ‘ / !
(- - PN Py
2

his 4

|

! |
ml .

|

4 6 8 10 12

Bit width
—
i no accuracy loss

: down to 4 bits for
Q/QP models

14

&
16 AQ AQP

LUT consumption [%]

100 I |

- —e— BF
- —4— BP

~
(%]

0),
o

25

I !

his 4 mI:

2 4 6 8
’ Bit width

10

i no accuracy loss

i down to 4 bits for
Q/QP models

AQ AQP
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Fast convolutional neural networks

Max parallelization, i.e. reuse factor = 1

1064_ | | | | ' I
| —e— BF hlS 4 mI ]
- —&— BP 1e
- = Q i

1056_— QP i —15.28
¢ AQ

AQP

clock cycles)
o
AN
(00}
I
|

L L oaol ~ 5 s inference time!

W W Y Ve SV
i X .
1032 I/ —

1024 — —15.12

|
|
o1
N
o
Latency (us)

Latency

| | | | | | 1 1 1 1
2 4 6 8 10 12 14 16 AQ AQP

Bit width




Bonus
ing beyond L1 trigger

Fast machine learn



The need for fast ML

100|KHz | z

1 MB/evt
High-Level Offline

40 MHz’ : :
trigger reconstruction
L1 trigger

©

ama Computing time
1 ns 1 ps ls
latency constraint latency AND throughput constraint

throughput constraint

Longer time — bigger models = coprocessors



Heterogenous computing

These platforms based on CPU+FPGA co-processor
system: offload a CPU from the

4x Faster than GPUs
computational heavy parts to a FPGA _
XILINX
“accelerator”
Common setup for FPGA connects (V100) GPu .

to CPU through PCl-express

I |||||||
t A
v

CPU 20x >
°% 16nm aws gl - i |
‘&3 #® UltraScale™ Architecture NIM;AI): oud Deployel
0 1000 2000 3000 4000
Of1Chip Memory Support ¢ D cloud o on- Googlenet v1
* Max Ba:dwidih: 77GB/s

Img/s
. o Premise Mobility

Internal SRAM i "’ Ecosystem of Applications
« Max Capacity: 54MB \
» Max Bandwidth: 38TB/s " .

= * Many available today
‘% $) e « More on the way

-

| Increased computational speed of 10x-100x
I oo Reduced system size of 10x

i 00 1 o Reduced power consumption of 10x-100x

‘:ﬂ PCle Gen3x16

nnnnnnnnnnn

..~ Accelerate Any Application
SDACCQl » |DE for compiling. debugging, profiling

+ Supports C/C++, RTL, and OpenCL

hitps://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/publications/events/machine-learning-live/colorado/xDNN_ML_Suite.pdf

https://www.xilinx.com/applications/megatrends/machine-learning.html
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https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/publications/events/machine-learning-live/colorado/xDNN_ML_Suite.pdf
https://www.xilinx.com/applications/megatrends/machine-learning.html

Online reconstruction

1000 servers w/ 32 cores processing
100K events per second

(750K @ HL-LHC)

Example: CMS online reconstruction

Particle Flow

and Taus reco
8% 15%

Application logic and 1/0

e EC AL reconstruction 8%

E/Gamma reco
4%

Jets/MET reco
3%

HCAL reconstruction 16%

HCAL local reco
16%

Full tracking
and vertexing
30%

Pixel local reco
and tracking
9%

Full tracking
and vertexing Speeding up tracking and calorimeter reconstruction

30% crucial to increase throughput
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Online reconstruction

* Large effort in the past years to rewrite parts of the reconstruction in CUDA for

Nvidia GPUs

See A. Bocci talk at CHEP19

HCAL: local reconstruction
and calibrations

- example for CMS:
can offload 24% of
the online reconstruction

. . see Monday's talk in Track 9
achieving up to x10 High Performance Computing
higher throughput

pixel tracking:
global reconstruction
details on the next slides

J\“\'“e\

. @ axeN

ECAL: local reconstruction KfTrackcandida®
and calibrations

today we can offload ~24%
of the online reconstruction!

* Parallel effort to replace parts of the reconstruction with ML

- minimize need to learn new processor-specific code = decrease effort, increase
maintainability

- must exploit co-processors to achieve highest throughput
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https://indico.cern.ch/event/773049/contributions/3474336/attachments/1940557/3217478/Heterogeneous_online_reconstruction_at_CMS.pdf

Heterogenous computing @ LHC

Option 1: direct Option 2: as a service
K
YII \ GPU

1000 Model A
=1 e W e ST Model B
- ] (GPU/FPGA/ASICS) : 1000 :
[ ] & | S \ E

1000 - - COPROCESSOR [

g | (CPU § et (GPU/FPGA/ASICS)

1000 - -
- @ | TEEE———— COPROCESSOR
put 1 (GPU/FPGA/ASICS) 110
- D |

1000 (=1 = COPROCESSOR

- - (GPU/FPGA/ASICS)

1000
- - 1100
- C AR COPROCESSOR | 1t
- o Rl (GPU/FPGA/ASICS)

TIT Could be
N Y,

somewhere else

\l 100
Data center/
Data center/ experimental site

experimental site
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Heterogenous computing @ LHC

Option 2: as a service

GPU
—
* One coprocessor can serve many gm——— s
CPUs — reduce cost and increase : 994t
scalability o | cru | =
* Increase heterogeneity: choose best T
device for each job —
e Deploy GPUs, FPGAs, ... - -
. ) pu e ] COPROCESSOR [
simultaneously — - — g
* Model optimization for the processor _ TIX 5
could be obtained with available tools — Idb """""""""""""""""""
(ex, Intel oneAPI [*]) . p Could be

somewhere else

Data center/
axperimental site
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MLaa$S with SONIC

* Services for Optimized Network Inference on Coprocessors (SONIC)
enables inference as a service in experiment software frameworks

- experiment software (C++) only has to handle converting inputs and outputs between
event data format and inference server format

* Uses industry tools as gRPC communication and Nvidia Triton inference servers

* Interacts with cloud services: Azure, AWS, GCP

gRPC

Cloud/Ground

_ PCle Coprocessor
CPU Client —> ’
GRPC Server (eg. FPGA, GPU, ...)

(eg. CMS software) (eg. Cloud instance)

gRPC 1. Runs the inference
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MLaa$S with SONIC

Replace hadronic calorimeter reconstruction with ML (2k parameters dense NN here)
and enable the model inference in the CMS software with SONIC

8000 —— 1GPU
— 4 GPU
2000 batCh ]6K - = Nominal HLT algorithm
., 6000
A
@ 5000
'g ————————————————————————————— —
S 4000 I T T I
™
-—
© 3000
|_
2000 -
1000 -
O T T A T T L4
50 100 200 300 500 1000
Simultaneous processes
7000{ AWST o ::’:GA
=« Nominal HLT algorithm
6000 - ;
W batch 16K
OE) 5000 - '
B hecccccccccc e e e ——————— - ———— -
- .r = . ... .f ............... I:i
B 4000
|_
3000 -
AWS fl.16xlarge
2000

400

600 800 1000 1200 1400 1600 1800 2000
Simultaneous processes

GPU as a service [arxiv.2007.10359]

Each client is given 7,000 events
A single GPU can serve up to 500 HLT nodes
with 10% increase in throughput

FPGA as a service [arxiv.2010.08556]
A single service server capable of serving
1500 simultaneous clients while preserving throughput

25Gbps network bandwidth limit hit above 1500
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The need for fast ML

ASICs typically used at the front end for sensors read out:
directly embed ML in here to allow intelligent data compression before transmission

1 KHz

100 KHz

o e~

High-Level Offline
trigger reconstruction

L1 trigger

Computing time

1 us 100 ms 1s

latency constraint latency AND throughput constraint
throughput constraint

65



Example:
High-granularity calorimeter @ HL-LHC

Novel technology for CMS endcap calorimeter:
52 layers with unprecedented number of readout channels!

» ]

A N \ \ =
3 Y 1 v e
4 1 Y A 1 3 YT
| \ ~ 1 )
) ) - 1 1
\ 3 1 4 |
3
3 ) 1 | :
3 1 ) )
. . 4 9
¥ N
4 | |

: ‘ : sE e

CMS HGCAL TDR
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http://home.fnal.gov/~chlebana/CMS/TDR-17-007-paper-v5.pdf

Example: CMS HG calorimeter

Input

48 “trigger cells” '

7b floating point
(336b total)

Output:

“Super trigger cell” algo
A8IE P 3016 7C sum] x 13b = 39

Can we do a better job of encoding the info in
those bits w/o so much loss in granularity?

Encoder on ASIC Decoder on L1 board
G——————————— G —

Encoder network

Really need
quantized training
here to optimize
information encoding

okd 7 /

Use QKeras!

——

e
- - NN,

_______

Expansive part:

T (“volume” of conv. ouput)
X

(encoding dim)




What you have learned today

* Machine learning models are intrinsically parallelizable and can be executed
efficiently on suitable hardware

* Could replace our standard physics-inspired algorithms which are instead typically
sequential

* To gain from this potential down to ultra-low latency the hls4ml library was
developed to translate your favourite ML model to an efficient FPGA implementation

* We hope you have gained some experience with hls4ml

- tutorial always available at hitps://cern.ch/ssummers/hls4ml-tutorial

- or if you want to run locally https://qgithub.com/fastmachinelearning/hls4ml-tutorial
(need Vivado installation)

e Stay tune for all new features at hitps://github.com/fastmachinelearning/hls4ml

* And for fast machine learning updates beyond hls4ml check https://
fastmachinelearning.org/projects.html
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