Is there a need for a 'European Infrastructure for R&D and Test of SRF cavities and cryomodules?

Wolfgang Weingarten - CERN

1st annualRFTech meeting DESY Hamburg - W. Weingarten

3/29/2010


first ACCNET meeting: 04.12.2008

1st annu <mark>IRFFexh me</mark>cters DESY-Hamburg - W. Wennerton

A

3/29/2010

Networks Coordination & Communication

ACCNET

coordinated by Walter Scandale, CERN; Alessandro Variola, LAL Frank Zimmermann, CERN (from Nov. 2009)

EUROLUMI accelerators & colliders performance coordinated by Frank Zimmermann, CERN Ezio¹ Todese decle Report Hamburg - W. Weingarten

RFTECH sc & nc rf technologies coordinated by Jean-Marie de Conto, UJF Mariusz Grecki, DESY (&TUL) Wolfgang Weingarten, CER 1010

RFTech goals

- The goals of RFTech are to provide a network for information exchange and close collaboration between the European, and worldwide, experts on accelerator RF systems. The scientific objectives are the improvements of RF cavity design, superconducting RF (equipment for R&D and test of cavities and cryomodules), low-level and high-power RF systems, and costing tools.
- http://accnet.lal.in2p3.fr/Tasks/Rftech/

Objective: Define a strategy for SRF test infrastructures

i.e. the **main objective** of the "SRF sub-task" consists in intensifying a collaborative effort between European accelerator labs with the aim of planning and later providing for European accelerator users a multi-purpose state-of-the art network of equipment for R&D and test of SRF cavities and cryo-modules within 2 years, to be presented to the funding agencies

What commitment did we take?

1st annualRFTech meeting DESY Hamburg - W. Weingarten

3/29/2010

EuCARD Deliverable

<u>https://edms.cern.ch/nav/CERN-0000077769/CERN-0000077787\</u>

EDMS No. D4.3.2:

Strategy/result for SRF test infrastructures Due delivery month 24 (March 2011)

What do we learn from the past?

1st annualRFTech meeting DESY Hamburg - W. Weingarten

3/29/2010

1st lesson

- The SRF community is relatively small and well known to each other. If need is, arrangements are taken between labs with focus on a specific project of mutual interest:
 - Examples:
 - CERN profited from students from University labs (e.g. Darmstadt with the S-DALINAC)
 - The first beam test of a CERN made sc cavity was done at DESY 1982/3 (going to equip the HERA e-ring with SRF cavities)
 - The SPL study is associated with European and overseas partners (e.g. CNRS, CEA, BNL, TRIUMF, TEMF Darmstadt, Rostock University, RHU London, possibly ESS Lund, ...)

2nd lesson

• The SRF community is well integrated in supra-national integrative attempts (partly providing resources):

Example: Crosslinks to other institutes via ...

- CERN consortia
 - SPL collaboration: CEA, CNRS, TRIUMF, BNL, German Universities, RHU London, ...
- FP7 consortia
 - EuCARD (mainly Work Package 10: Superconducting RF technology for proton accelerators and electron linear accelerators);<u>https://eucard.web.cern.ch/EuCARD</u>/
 - SLHC-PP

http://info-slhc-pp.web.cern.ch/info-SLHC-PP/

ILC-HiGrade

http://www.ilc-higrade.eu/

- Institutes from not retained SRF Infrastructure proposal: BESSY (D), ...
- National Consortia
 - Physics at the Terascale Initiative (D)

http://www.terascale.de/

 BMBF (D) Initiative (22 Oct 2008):TEMF Darmstadt, Uni Rostock, TUD, BUW, ... <u>http://www.bmbf.de/foerderungen/13099.php</u>

Other International Activities

• TESLA Technology Collaboration Meetings

http://tesla-new.desy.de/

Example

in statu nascendi

- An attempt was initiated to re-group European accelerator infrastructures: **TIARA**
- The main objective of TIARA (Test Infrastructure and Accelerator Research Area) is the integration of national and international accelerator R&D infrastructures into *a single distributed European accelerator R&D facility*. http://www.eu-tiara.eu/

3rd lesson

- Universities played an important role for scientific innovations
- Large scale applications in technology and engineering mostly done in research centers
- Reproducibility mostly achieved in close interaction between industry and research centers

Important innovations in SRF 1/3

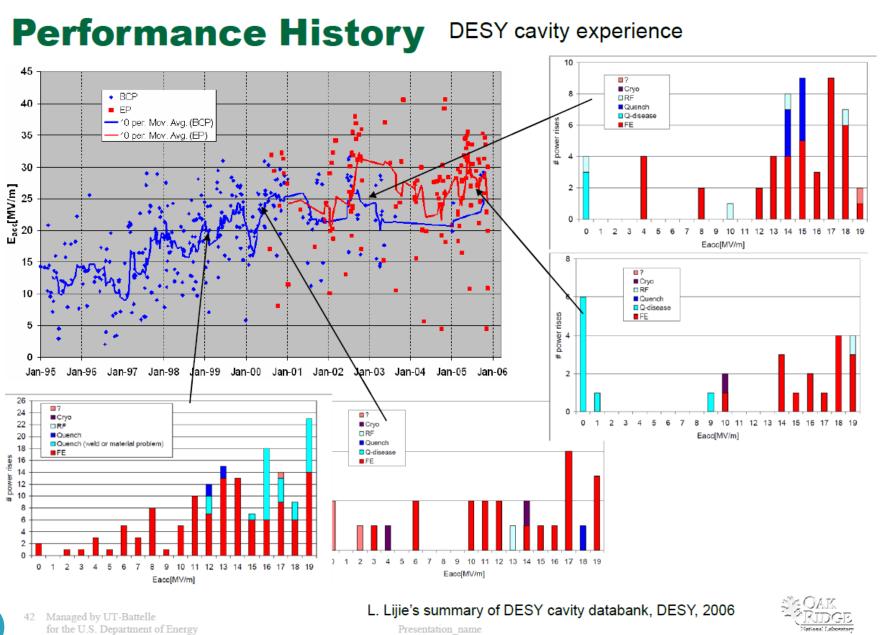
Apologies for possible personal bias

Innovation	Year	Laboratory	Type of work
Computer programs for e-m	1966 - 1977	Los Alamos Nat.	R&D for accelerator
fields (LALA, SUPERFISH,		Lab./Darmstadt University	
MAFIA)			
UHV firing of Nb cavities	1968	Stanford University	R&D for sc accelerator
Electropolishing of cavities	1971	Siemens Erlangen Research Lab	R&D for sc accelerator
Field emission (Cure by Helium	1974	Stanford University	R&D for sc accelerator
processing)			
Numerical analysis of Mattis-	1974	Karlsruhe University	R&D for sc p-
Bardeen integrals		/Research Centre	accelerator/separator
Nb ₃ Sn coating of cavities	1975	Bonn University	Diploma thesis
		Siemens Erlangen Research Lab	R&D for sc accelerators
2nd sound diagnostics	1977	Argonne Nat. Lab.	R&D for sc heavy ion
			accelerator ATLAS
Operation with permanently	1977 ff.	Stanford University/ Illinois	R&D for sc accelerator
installed sc cavity		University/Darmstadt	/MUSL accelerator/S-
		University	Dalinac

1st annualRFTech meeting DESY Hamburg - W. Weingarten

3/29/2010

Important innovations in SRF 2/3

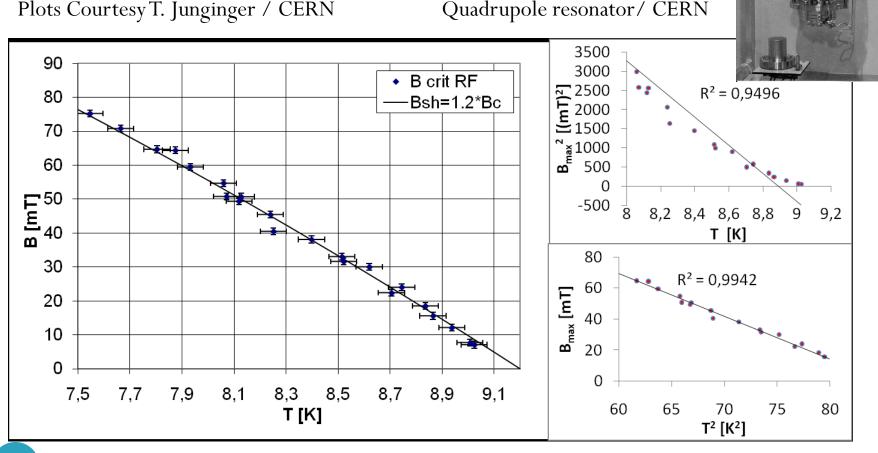

Innovation	Year	Laboratory	Type of work
Multipacting (analysis, cures)	1977/8	Stanford	R&D for sc accelerator
		University/Wuppertal	
		University	
Temperature mapping diagnostics	1980	CERN/Wuppertal University	R&D for LEP200
Thermal conductivity (cure against	1980	Cornell University	R&D for sc storage ring
quench)			
High power RF processing	1984-94	SLAC/ Cornell University	R&D
Nb on Cu coating	1984	CERN	R&D for LEP200
Dust particles as field emitters in RF	1984	CERN	R&D for LEP200
-			
Ultra-Clean water (cure against field	~1985	КЕК	R&D for TRISTAN
emission)			
DC Identification of field emitters	1986	Geneva University	R&D for LEP200
Seamless multi-cell cavities (Nb)	1987 -2003	Cornell University, DESY, INFN	R&D for
		Legnaro	TESLA/FLASH/XFEL

1st annualRFTech meeting DESY Hamburg - W. Weingarten

Important innovations in SRF 3/3

Innovation	Year	Laboratory	Type of work
TRISTAN SC system in operation	1988	KEK	Technology & Engineering
Seamless multicell cavities (Cu)	1989	CERN	R&D for LEP200
High pressure water rinsing (cure against field emission)	1991	CERN	R&D for LEP200
Demountable HOM hook type beam tube coupler	1991	CERN/CEA-Saclay	R&D for LEP200
HERA SC system in operation	1992	DESY	Technology & Engineering
CEBAF SC system in operation	1995	JLAB	Technology & Engineering
LEP200 SC system in operation	1998	CERN	Technology & Engineering
Max. RF field near theoretical limit	2007	Cornell University/ KEK	R&D for ILC
LHC SC system in operation	2008	CERN	Technology & Engineering

16

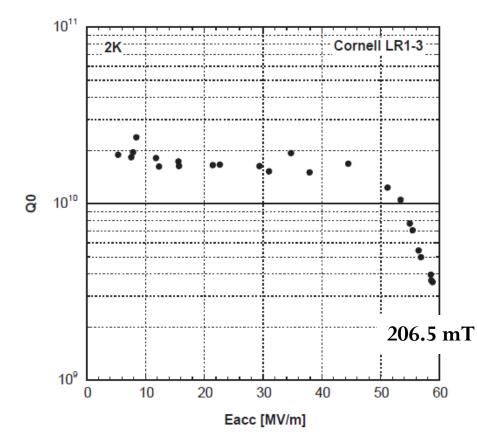


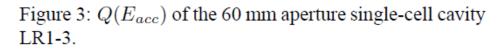
4th lesson

- The Nb technology touches its (predicted) theoretical limits; however issues such as reproducibility of high gradient performance and cost reduction issues are still challenging.
- About four decades R&D efforts passed up till obtaining the theoretical limit of the Nb SRF technology more years are ahead up till obtaining reproducible results
- The innovation most promising in the future consists in (classical) high T_c supercondctors, such as Nb₃Sn
 - they would allow larger acc. gradients (thanks to their larger thermodynamic critical field B_C) and would also allow operation at 4.2 K instead of 2 K (for $f \ge 700 \text{ MHz}$)

Nb is approaching the theoretical predicted limit 1/2

 $\mathbf{B}_{\mathrm{crit}}^{\mathrm{RF}} = \mathbf{B}_{\mathrm{sh}} = 1.2 \mathbf{B}_{\mathrm{c}}$




1st annualRFTech meeting DESY Hamburg - W. Weingarten

3/29/2010

19

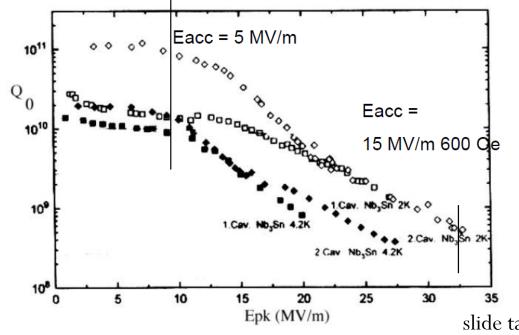
Nb is approaching the theoretical predicted limit 2/2

 $B_{crit}^{RF} = B_{sh} = 1.2 B_{c} = 230 mT @ 1.8 K$

Figure 1: Left: 60 mm aperture re-entrant cavity; Right: 70 mm aperture TESLA cavity.

Cornell - KEK collaboration

1st annualRFTech meeting DESY Hamburg - W. Weingarten


3/29/2010

20

Nb₃Sn thin film coating

Best CW Result for Single Cell Nb3Sn Cavity 1300 MHz (Mueller and Kneisel)

- Q-slope observed in CW measurements may be addressed by improved material preparation
- As with high field Q-drop in Nb addressed by EP and baking.

Since the BCS surface resistance is approximately

$$R_s \langle \!\!\! \langle \!\!\! \langle c, f, T \rangle \!\!\!\! \rangle = a \cdot f^{1.7} \cdot e^{-1.8 \frac{T_c}{T}} \Big/ \!\!\! T$$

Nb₃Sn thin films, with their larger $T_c = 18$ K, and their larger $B_c = 540$ mT compared to Nb, allow the perspective of operation at 4.5 K and larger gradients than for Nb for planned linear colliders, proton drivers, ERLs and crab cavities with f \geq 600 -700 MHz.

 Epk (MV/m)
 slide taken from H. Padamsee's

 1st annualRFTech meeting DESY Hamburg - W. Weingarten
 3/29/2010

Conclusion on lessons learnt

- The SRF community is relatively small and well known to each other.
- The SRF community is well integrated in supra-national integrative attempts
- Mutual interaction of universities and research centers lays the ground for technological and scientific success
- Niobium technology is approaching the predicted theoretical limit: In view of the long development time, alternatives such as the classical high T_c superconductors should be picked up

NOW

to obtain larger gradients and more economic operation (4.5 K)

Information from EuCARD coordinator: Next SRF relevant call from EU-FP7 program due end of 2011!

Spare slides

Procedural method

very similar as for the preparation for EuCARD during 2007/8 (European SRF Infrastructure proposal)?

- 1. Identify and contact labs with SRF activities; compile **existing equipment**, its availability, **cost for refurbishment**, if needed
- 2. Identify in **future projects** making use of SRF, their host lab, timescale and specificities (operating frequency, gradient, Q-value, temperature, beam structure and current, ancillaries such as power and HOM coupler, tuner, cryostat,...)
- 3. Define for each future project the **required equipment** for R&D and tests
- 4. By comparing 2 and 3, identify **missing equipment**, for each project, both in **host and collaborating labs**, and figure out the **costs for acquisition**
- 5. Prepare a **project description** including required resources to be provided to funding agency after 2 years
- 6. **Coordinate SRF test activities**, if needed, already during the preparation phase

What was done during the preparation for EuCARD in 2007/8 (European SRF Infrastructure proposal)? Available equipment at different labs

Laboratory	Equipment		
RECOV	HoBiCaT test facility for high and low power operation of fully equipped cavity systems at 1.8-2.2 K		
BESSY	Cavity tests at 1300 MHz		
	Coupler tests at 1300 MHz		
BUW	Field emission scanning of samples		
	Vertical tests of different sizes of SRF cavities between 4.5 and 2.0 K		
	Assembly and horizontal tests of fully equipped cryo-modules at 352/400/704 or 1300 MHz between 4.5 K and 2.0 K		
CERN (central infrastructure)	Annealing and heat treatment in different UHV furnaces		
init astructure)	Coating with niobium of different sizes of RF cavities made of copper		
	RF characterization of samples (surface resistance vs. RF magnetic field)		
CI	Sample tests (XPS/SEM, RF tests)		
DESY	XFEL infrastructure and TESLA TEST FACILITY		
INFN Roma	Coating techniques of niobium on copper alternative to sputtering		
IPJ	Experimental facilities for UHV arc deposition of pure Nb and Pb layers		
	88, 352, 704, 1300 MHz power coupler tests		
	Vertical tests of SRF cavities of different size		
SUPRATECH	Horizontal cryostat for high power RF tests at 2.0 K (CryHoLab)		
	Electro-polishing of niobium		
	High temperature annealing furnace (900 °C)		
TUD	High temperature annealing of samples and small size cavities		
UEN	Microwave imaging laser scanning of samples		