SCRF Research at JAI@RHUL

(John Adams Institute at Royal Holloway, University of London)

Steve Molloy

Monday, 29th March 2010

Overview of presentation

- Research plans
 - Physical measurements
 - e.g. bead-pull
 - Simulations
 - e.g. intra-cavity coupling
 - Beam measurements
 - e.g. HOM-based diagnostics
- Available resources
 - People
 - Infrastructure
 - Software

Current plans (1)

- Physical measurements
 - Bead-pull facility
 - Cavity prototypes
 - Investigations of dangerous modes
 - Field profile, flatness, coupling, ...
- "Large scale" simulations
 - Intra-cavity mode coupling
 - Multipacting (fundamental/HOM coupler)
 - Intra-cavity field emission

Bead-pull technique

Energy resonantly exchanged between E & B fields. A perturbation affecting the stored energy will therefore alter the frequency.

 $\left(\frac{\Delta f}{f}\right) = \left(\frac{k}{4U}\right) \iint \left(\mu H(x, y)^2 - \epsilon E(x, y)^2\right) dx dy$

There are many other ways to perform this calculation, including observation of phase changes, etc.

Software – SLAC's ACE3P codes

	Module Name	Description
Frequency Domain	Omega3P	Eigen-solver for resonant modes
	S3P	S-Parameters
Time Domain	Pic3P	PIC code for space- charge dominated devices
	Track3P	Particle tracking for multipacting & dark current
Multi-physics	TEM3P	EM, thermal, mechanical

Intra-cavity coupling

Each cavity mode will be found four times

- One for each cavity
- A single cavity will dominate each mode, however the evanescent field allows coupling.
 - Beam → Field coupling in one cavity will excite fields in all others.
 - Expect coupling to increase (non-trivially) with frequency
- Extract intra-cavity coupling from simulation
 - Coupling defined as ratio of max field in cavity to max field in cryomodule
 - Therefore, for the dominant cavity, coupling = 1!

Eigenmodes exist in all cavities

Coupling – 1st five passbands

vay lon ., 2010

~6 m long

oyal Holloway sity of London

n Molloy, 29th Mar., 2010

~760k elements Average volume = $4.5 \times 10^{-7} \text{ m}^{-3}$ Min edge length = 1.4 mmMax edge length = 32.9 mm

~6 m long

~760k elements Average volume = $4.5 \times 10^{-7} \text{ m}^{-3}$ Min edge length = 1.4 mmMax edge length = 32.9 mm

~6 m long

~760k elements Average volume = $4.5 \times 10^{-7} \text{ m}^{-3}$ Min edge length = 1.4 mmMax edge length = 32.9 mm

Intra-cavity coupling

A

lolloway

29th Mar., 2010

Intra-cavity coupling

Current plans (2)

- HOM diagnostics
 - Builds on my postdoc research at SLAC
- HOMS destructive and to be avoided
 - However
 - High resolution diagnostic capabilities
 - 5D beam position
 - (Everything except for momentum)
 - Internal cryomodule alignment
 - Cavity deformations

Transverse Diagnostics

- Dipole modes couple to transverse offsets
 - Position and angle
 - Each dipole mode has 4 degrees of freedom
 - Amplitude & phase for two polarisations
 - Calibrate these against 4D beam position
- Installed at FLASH
 - Resolution of ~microns
 - <100 nm should be possible</p>
- Multi-bunch is tricky
 - Finite Q causes bunch-to-bunch overlap
 - Technique developed
 - Needs to be tested

Longitudinal Diagnostics

- Acceleration phase
 - i.e. arrival time of beam wrt to accelerating RF
 - Beam arrival monitors have long term stability issues
 - Cable length drifts with temperature, etc.
- Acc. mode also coupled out HOM port
 - Compare with beam generated monopole

Cavity alignment within cryomodule

Research Staff

• Me!

- Full time academic
- Some fraction of my time devoted to this

Research Assistant

- Held interviews yesterday!
- $75\% \rightarrow 100\%$ on this topic

PhD Student

- Starts this summer
- 100% on this topic

Resources

RF laboratory

- Digitisers, sources, spectrum analysers, vector network analysers, ...
 - ≤18 GHz
- In discussions with college to extend
 - > doubling the lab's area!
 - Will include a cavity RF measurement space
 - Bead-pull facility

Simulations

- NERSC: Franklin \rightarrow 15th fastest supercomputer in world!
- 38642 cores
- 150k CPU.hours reserved for us.

Likely to increase

Thanks for listening!

