Update on Kinematic Fits in the Leptonic Channel

Benedikt Mura Hamburg SUSY Meeting 11.2.2010

SPONSORED BY

Benchmarkpoint & Cascade

mSUGRA Parameters

	SPS1a	
m_0	100 GeV	
$m_{1/2}$	250 GeV	
A_0	-100 <i>GeV</i>	
$\tan(\beta)$	10	
μ	>0	

Particle	Mass [GeV]	ΔM to next [GeV]
\tilde{g}	606	39 / 44
$ ilde{q}_L$	567 (ud) / 562 (cs)	387 / 382
$ ilde{\chi}^0_2$	180	37
\tilde{l}_R^\pm	143	46
$ ilde{\chi}^0_1$	97	

X-section: ~36 pb @ 14 TeV

Leptonic Cascade

- 2 jets + 2x2 OSSF leptons
- 16/32 possible combinations
- $-BR = 1.7*10^{-3}$

Likelihood Definition

- Hypotheses close to true masses fit on average better
- Use events' combined fit probability to quantify how good the assumed masses fit.

$$\log \mathcal{P} = \sum_{i}^{N} \log P(\chi_{i}^{2})$$

$$P_{i} = P_{\text{cut}} \text{ for } P_{i} < P_{\text{cut}}$$

- Cut-off to avoid numerical fluctutations
- $-P_{cut} = 0.01$

Event Selection after Fit

- For each event select best of 500 fits to calculate likelihood, repeat 99 times
- Fluctuations caused by events with very low convergence rate
- New Procedure after fitting:
 - Find hypothesis with best likelihood
 - Select events with a cut on the convergence rate at this point (e.g. CR > 0.2)
 - Use this selection for all hypotheses

New Mass Scan

- Mass scan in two dimensions
- 500 fits per hypothesis
- Signal + Background

Before event selection

- Areas of same likelihood nicely connected after cut on convergence rate
- Best Hypothesis close to true masses

After event selection

New Mass Scan

- Error bars from RMS of likelihood (slide 4)
- Squark Mass
 - True mass about Δ LH=1 i.e 1σ away from fit minimum
- χ^2 / ndf 153.7 / 14 p0 $4.147e+04 \pm 0.2519$ 223.5 -147.7 ± 0.0004537 р1 **p2** $0.1322 \pm 8.091e-07$ 223 222.5 **True Mean** 222 Value 221.5 221 220.5 554 555 556 557 558 559 560 561 562 M(Squark)

- Bad χ^2 /NDF: need to study other uncertainties
- Slepton Mass
 - Minimum very close to true value

Mass Scan: Signal Events

- Scan range not large enough:
 - extend to see entire peak
- Smaller best slepton mass

- Perfect parabolic shape of the likelihood for M(squark)
- Minimum shifted to larger masses

Next Steps

- Extend fit range
- Reduce CPU time
 - Decrease no. of fits/hypothesis
 - Optimize convergence criteria
 - Split event sample
- Scan all 4 masses

- Study angular variables to improve association of jets & lepton to decay branches
- Use Fast Simulation events