KFS – Digitalization priorities

ErUM DATA Meeting

Jan. 15, 2021

Christian Gutt KFS UNIVERSITÄT SIEGEN

Komitee Forschung m

Synchrotronstrahlung

Outreach activities to and input from the community

- 2/2018 KFS user survey on needs for Data management
- 3/2018 KFS+KFN workshop #1 "Digital transformation" at DESY
- 9/2018 KFS+KFN symposium at SNI Munich
- 6/2019 KFS+KFN workshop #2 "Digital transformation" at DESY
- 2018-2020 Participation in the BMBF ErUM Data process
- 2019/2020 DAPHNE4NFDI proposal

Research data management

DAPHNE4NFDI

- Universities
- Research institutions
- KFS-Committee for Synchrotron Research
- KFN-Committee for Neutron Research
- Large-scale photon and neutron research
 facilities
- Wider community

Challenge #1 - variety of disciplines, X-ray techniques and samples, set-ups and data

Degree of automatization and standardization in experiments and data varies across the techniques

Protein crystallography – experiment and data highly standardized

Most others: data, metadata highly user specific

Challenge #2: increasing data rate

	Per year (2019)	BESSY II	PETRA III	FLASH	EuXFEL	ELBE	MLZ	Total	ESRF EBS
500 fps, 12 MPix 12MB/image 21 TB/hr (6 GB/s) 2PB free space 'full in a few days'	Beamlines (BL) Measuring stations (MS)	27 BL 37 MS	22 BL 42 MS	2 BL 7 MS	3 BL 6 MS	1 BL 7 MS	26 BL 26 MS (+7 BL)	81 BL 125 MS	44
	Experiments/ year	800	1400	38	25	70	620	approx. 2950	2000
	Individual Users	1500	3000	350	499	100	600	approx. 6050	9000
	User visits	3000	5000	500			>1000	>9500	
	Publications	500	500	30	94	40	345	approx. 1500	2000
	Data generated	1-2 PB	5 PB	1 PB	20 PB	0.5 PB	6TB	28.5 PB	> 20 PB
	Expected 2025	8 PB	20 PB	4 PB	100 PB	2 PB	0.5 PB	134.5 PB	60 PB

New (ML/AI) software and algorithms for coping with data avalanche

Five possible objectives - more welcome

1. Faster and better classification / analysis of X-ray data and feedback loop to simulation/models/theory.

Example: Ptychography, ML training

- on a small subset of the data/sample
- on 180k artifical samples

Allows to improve speed and relax on sampling conditions

Neural network reconstruction 300 x faster than Phase retrieval- outlook for real time imaging

1. Faster and better classification / analysis of X-ray data and feedback loop to simulation/models/theory.

X-ray techniques

- X-ray reflectivity
- GISAXS
- SAXS
- WAXS
- Ptychography
- Tomography
- XANES, EXAFS
- X-ray spectroscopy
- Resonant magnetic scattering
- XPCS
- Serial crystallography
- FEL diffraction pattern classification

ML techniques

- Pattern/image recognition and classification
- Machine learning for inversion problems
- Automated segmentation in tomography
- Superresolution

. . .

2. Towards autonomous experiments

Noack et al. Scientific reports (2019) 9:11809

Coffee ring with nanoparticles

Sample

Grid scannning

(a) (b)

2. Towards autonomous experiments

Noack et al. Scientific reports (2019) 9:11809 Credit animation: Talk S. Jethian (Berkely + CAMERA), ESRF-ILL workshop 2019

Grid

Add: beamline control accelerator

SMART

A. Chen et al. InfoMat. 2020;2:553–576.

3. X-ray data mining ML based cross analysis using repositories etc.

Ren et al., Sci. Adv. 2018;4:eaaq1566

Example: Predicting material properties

ML predicted glass forming ability (GFA) of tenary metallic glasses based on X-ray data

Requires data research management

- complete metadata
- electronic logbooks
- curated and documented analysis software
- proper repositories
- ontologies
- descriptors for material properties. (PRL 114, 105503 (2015)

4. Benchmarking, development, use and understanding of ML algorithms

5. Parallelization, GPU + FPGA computing

Example: X-ray photon correlation spectroscopy.

Pixel by pixel correlation

$$g_2(\vec{Q},t) = \frac{\langle I(\vec{Q},t')I(\vec{Q},t'+t)\rangle}{\langle I(\vec{Q},t')^2 \rangle}$$

Benefits from parallel computing

Priorities for KFS

- We are striving for science- and user-driven software solutions for our community.
- Close collaboration with the national facilities including European XFEL and ESRF
- Evaluate cross community efforts e.g. together with KFN, KFB, KFSI
- Include ML/AI stakeholders and other ErUM communities
- Understanding ErUM Data as a long-term project for the KFS community aiming for establishing new algorithms, new data management, federated infrastructure and data science education.
- Today and tomorrow: KFS encourages you to discuss and plan possible collaborations for ErUM Data.