

Council of German Observatories (RDS)

- Who are we?
- What are our special characteristics?
- What are our needs?
- Where do we see interfaces with NFDI & ErUM-Data?
- What are our plans?

Council of German Observatories (RDS)

RDS

- Executive committee of Astronomische Gesellschaft (AG)
- About 2700 researchers in the area of astronomy and astrophysics in Germany including about 700 PhD students*
- About 40 university and non-university institutions (Max-Planck, Leibniz, Helmholtz)
- Few big centres, many smaller institutions
- Tightly linked to international and intergovernmental organization and facilities (e.g. ESO, SKA, CTA, EST – see also EU ASTRONET Roadmap)
- For comprehensive description of status and goals see "Denkschrift 2017"
- Representing about 20% of ERUM-Data Community**
- *as in Denkschrift (2017)
- **as in Recommedations of the ErUM Committees (2019)

Heterogeneous, distributed, diverse... in many aspects

Jenkschrift (2017

- From ground to air & space
- Single telescopes & networks
- Multi-messenger science with and without triggers
- Exploiting EM spectrum and beyond
- Probing timescales from nanoseconds to centuries
- Involving professionals, amateurs, citizen scientists

Our Data ...

 From cosmic laboratories and experiments that cannot be controlled <u>or repeated!</u>

Optimal data exploitation is essential

- Diverse in nature and multi-use
 - Electromagnetic (radio, submm, Optical/IR, UV, X-ray, Gamma-ray)
 - Gravitational Waves, particles and particle showers
 - Time Domain, Imaging, Spectroscopy, Polarization etc.
 - Computer Simulations
 - Laboratory Astrophysics (Astrochemistry, Astrobiology)
- Large data volumes (hitting technological boundaries)
 - Large scale surveys and dedicated experiments
 - Distributed & dynamic, non-conservative compression
 - Deep learning methods for archive coherence and fast & flexible interoperation
 - Problem of information loss and data irreversibility
- Particular features of our data
 - Mostly open data (except proprietary periods of ~1 year)
 - Lots (but far from all) accessible via virtual observatories
 - Huge amounts with increasingly grueling data rates (e.g. 150TB/s)

20 TB/night

Astrophysics is a Data and Discovery Science

- FAIR: Findable, Accessible, Interoperable and Reusable is key!
- Historically:
 - Copernican revolution (long term observations)
 - Halley's comet (inference from different records)
 - Neptune's discovery (combining theoretical predictions & excellent maps)
 - Mercury perihelion advance leading to first test of general relativity
- Some examples:
 - Hubble Deep Fields (from exoplanets to cosmology)
 - 50% of publications utilizing Hubble Telescope data based on archival work
 - Gravitational Waves by merger of two neutron stars (multi-messenger approach)
- Future:
 - "Data Avalanche" (archiving Exabytes/yr) by large surveys and next generation of telescopes & simulations. But this has already started! (e.g. EHT, MeerKAT, LSST)
 - Data mining and deep learning not only on isolated data sets but connected across instruments and archives

Needs to be addressed within PUNCH4NFDI

- Building sustainable competence centers for (astronomical) data
 - Data management (curation, provenance, publication) & Data publication software
 - Solutions for ,last dirty mile' (small data collections)
 - Well defined, internationally compatible interfaces to big projects
- Extension of FAIR data policies in our discipline
 - Interoperable, interdisciplinary standards und metadata, DOI
- Code to the Data
 - Deep learning
 - Distributed data processing and Data Mining
- Scientific Software Curation
 - supporting generic Open Source Software (e.g. astropy, gammapy, psrchive)
 - managing data and connected software as units
- Dynamical Archives
 - · Resolving lossy data problems and managing avalanche of online-data
 - · Data irreversibility and information loss
 - Especially in the presence of unpredictable background noise

Needs to be addressed by ErUM-Data

Depending on NFDI funding and implemented measures, we will have to (re)visit:

- Research data management
- Digital infrastructure (see below):
 - large amounts of compute power, sustainable storage, data lakes, dynamical archives & cloud computing
- Novel software & autonomous algorithms empowered by deep learning (see below)
- Knowledge transfer & cross-fertilization:
 - within community, with other communities and especially with industry
 - nationally and also internationally
- Education & Training:
 - workshops and schools, especially for the analysis of Big Data, cross-cutting technology & code, etc.
- Publicizing efforts & results:
 - utilising large existing network of planetariums and public observatories
 - building on experience in citizen science and public outreach

Important need for digital infrastructure

- Powerful compute infrastructure required also near instruments during data taking
- Sustained wide-bandwidth data transport capabilities (nationally and globally)
- Evolution of data lakes in combination with archives in suitable Tier-structure
 - dynamical, redundant and flexible
 - required by our heterogeneous and distributed data
- Challenge to guarantee sustainability of archives in landscape of international experiments
 - Global (or at least EU-) distribution of the data with access to cross-multi-messenger archives
 - Different approaches by different partners (e.g. ESO, ESA)
 - Even within organisations like ESO heterogeneous set of approaches (e.g. ALMA, APEX, VLT)
 - Financing & sustainability, incl. that of software, workflows & pipelines (e.g. many astronomers already use tools provided/financed internationally, e.g. AWS): national solution?
- General and important problem: certain urgency vs timeline of corresponding ErUM-Data call

First call of ErUM-Data: Software & Algorithms with focus on machine learning

Astronomy is a discovery science (e.g. CMB, pulsars, GBRs, FRBs etc.) in special requirements for Als. Many applications needed during, after and even before measurements, e.g.:

- Al working on different hardware with real-time and off-line analysis
- Ability to spot and identify outlier, unusual and unexpected data items and patterns in huge data
- Ability to mine data autonomously and attach errors and uncertainties to AI results
- Ability to understand and exploit data with different properties simultaneously, including information from different domains (time, frequency, imaging etc.)
- Ability to utilise multi-messenger information
- Ability to utilise AI methods for simulations and synthetic observations
- Ability to access, combine and utilise archive data in combination or even planning of new data
- Ability to plan and organise multi-messenger observing campaigns (decide on telescopes to use, which information to obtain and which set-up to use, watch also weather, satellites etc.)
- Ability to provide dynamical, flexible survey strategy orchestrated between different telescopes and in response to triggers

Conclusions

- Large range of challenges that astro community expects to address with ErUM-Data given the increasing resource gap, especially for university groups
- Lots of opportunities to share knowledge & technology with other communities
- With ErUM-Data fewer discoveries will be missed, especially thanks to Deep Learning
- Important additional way to exploit investment in our infrastructures

• The next logical step in mankind's oldest science