The role of q_T resummation in fiducial cross sections at the LHC

Markus Ebert Max-Planck-Institut für Physik

Based on [PRL 127 (2021) 7, 072001; arXiv:2102.08039] [JHEP 04 (2021) 102; arXiv:2006.11382] [JHEP 03 (2020) 158; arXiv:1911.08486]

in collaboration with

G. Billis, B. Dehnadi, J. Michel, I. Stewart, F. Tackmann

REF 2021 18.11.2021

MAX-PLANCK-INSTITUT FÜR PHYSIK

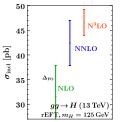
Motivation: Higgs production at the LHC

- $ullet \ gg
 ightarrow H
 ightarrow \gamma\gamma$ a key benchmark of the SM
- Can only measure *fiducial* cross sections in experiment, i.e. necessarily apply kinematic selection cuts
- Example: [ATLAS-CONF-2019-029] $p_{1}^{\gamma 1} \ge 0.35 m_{H_{1}}, p_{2}^{\gamma 2} \ge 0.25$

 $p_T^{\gamma 1} \geq 0.35 \; m_H, \;\; p_T^{\gamma 2} \geq 0.25 \; m_H, \;\;\; |\eta_\gamma| \leq 1.37 \;\; ext{ or } \;\; 1.52 \leq |\eta_\gamma| \leq 2.37$

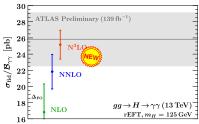
Inclusive Higgs production

- N³LO result calculated in [Anastasiou et al '15, Mistlberger '18]
- Perturbation theory stable at N³LO



Fiducial Higgs production (ATLAS $\gamma\gamma$ cuts)

- Calculated at N³LO in [Billis, Dehnadi, ME, Michel, Tackmann '21]
- Apparent loss of convergence



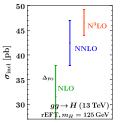
Motivation: Higgs production at the LHC

- $ullet \ gg
 ightarrow H
 ightarrow \gamma\gamma$ a key benchmark of the SM
- Can only measure *fiducial* cross sections in experiment, i.e. necessarily apply kinematic selection cuts
- Example: [ATLAS-CONF-2019-029] $p_{T}^{\gamma 1} > 0.35 m_{H}, \quad p_{T}^{\gamma 2} > 0.25$

 $p_T^{\gamma 1} \geq 0.35 \; m_H, \;\; p_T^{\gamma 2} \geq 0.25 \; m_H, \;\;\; |\eta_\gamma| \leq 1.37 \;\; ext{ or } \;\; 1.52 \leq |\eta_\gamma| \leq 2.37$

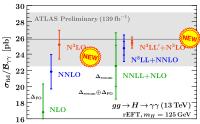
Inclusive Higgs production

- N³LO result calculated in [Anastasiou et al '15, Mistlberger '18]
- Perturbation theory stable at N³LO



Fiducial Higgs production (ATLAS $\gamma\gamma$ cuts)

- Calculated at N³LL'+N³LO in [Billis, Dehnadi, ME, Michel, Tackmann '21]
- q_T-Resummation restores convergence



Motivation: Higgs production at the LHC

- $gg \rightarrow H \rightarrow \gamma \gamma$ a key benchmark of the SM
- Can only measure *fiducial* cross sections in experiment, i.e. necessarily apply kinematic selection cuts
- Example: [ATLAS-CONF-2019-029]

 $p_T^{\gamma 1} \ge 0.35 \ m_H, \quad p_T^{\gamma 2} \ge 0.25 \ m_H, \quad |\eta_\gamma| \le 1.37 \quad ext{or} \quad 1.52 \le |\eta_\gamma| \le 2.37$

Inclusive Higgs production

- N³LO result calculated in [Anastasiou et al '15, Mistlberger '18]
- Perturbation theory stable at N³LO

Fiducial Higgs production (ATLAS $\gamma\gamma$ cuts)

- Calculated at N³LL'+N³LO in [Billis, Dehnadi, ME, Michel, Tackmann '21]
- q_T-Resummation restores convergence

Goal of this talk:

- **Q** Understand how q_T resummation impacts the total fiducial cross section
- 2 How to calculate fiducial cross sections with q_T resummation

Resummation effects in the total cross section

Resummation effects in the total cross section

• Starting point: factorize cross section into decay and production:

$$\sigma(\Theta) = \int \mathrm{d} Y \, \mathrm{d} q_T \, A(q_T,Y;\Theta) W(q_T,Y)$$

q is Higgs momentum

- $W(q_T, Y)$ is the hadronic structure function
- n.b.: For Drell-Yan, replace $A W \rightarrow A^{\mu\nu} W_{\mu\nu} = \sum_{i=-1}^{l} A_i W_i$
 - A_i are the angular coefficients (depend on CS angles (θ, ϕ))
 - Same conclusions as for Higgs when integrating over (θ, ϕ) [ME, Michel, Stewart, Tackmann '20] \rightarrow in this talk, consider only Higgs production
- Inclusive case: $A_{
 m incl} = 1 \;\; \Rightarrow \;\; \sigma_{
 m incl} = \int {
 m d} Y \, {
 m d} q_T W(q_T,Y)$
- Fiducial case: $A(q_T, Y; \Theta)$ acquires nontrivial dependence on q_T
 - Typically induces sensitivity to small-q_T region
 - which makes cross section sensitive to q_T resummation

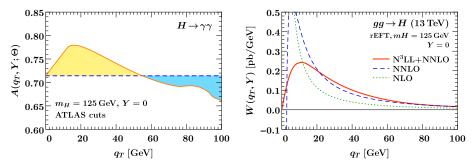
Illustration of acceptance

• Fiducial corrections from q_T-dependence of A induce resummation effects in

$$\sigma(\Theta) = \int \mathrm{d}Y \,\mathrm{d}q_T \,A(q_T,Y;\Theta) W(q_T,Y)$$

Acceptance acts as a weight under the q_T integral

Strong q_T -dependence of $A(q_T, Y; \Theta)$ in resummation regime $q_T \ll m_H$



Effect is predicted by resummed perturbation theory

Relation to q_T factorization

• Generic structure of the *q*_T spectrum:

$$egin{array}{lll} rac{\mathrm{d}\sigma}{\mathrm{d}q_T} = & rac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}q_T} & + & rac{\mathrm{d}\sigma^{(1)}}{\mathrm{d}q_T} & + & rac{\mathrm{d}\sigma^{(2)}}{\mathrm{d}q_T} & + \cdots \ & = rac{1}{q_T} iggl[\mathcal{O}(1) & + & \mathcal{O}iggl(rac{q_T}{m_H}iggr) & + & \mathcal{O}iggl(rac{q_T^2}{m_H^2}iggr) + \cdots iggr] \end{array}$$

• $\sigma^{(0)}$: Described by well-known TMD factorization theorem

$$rac{\mathrm{d} \sigma^{(0)}}{\mathrm{d} q_T} \sim rac{1}{q_T} \sum_{n,m} lpha_s^n \ln^m rac{q_T}{m_H}$$

• Divergent as $q_T \rightarrow 0$ and requires resummation (well known)

• $\sigma^{(1)}$: Linear power corrections from fiducial cuts [ME, Michel, Stewart, Tackmann '20]

$$rac{\mathrm{d}\sigma^{(1)}}{\mathrm{d}q_T}\sim rac{1}{m_H}\sum_{n,m}lpha_s^n\ln^mrac{q_T}{m_H}$$

• Still logarithmically divergent as $q_T
ightarrow 0$

• $\sigma^{(2)}$: Arise from fiducial cuts *and* corrections to hadronic tensor

• Truly suppressed as $q_T \rightarrow 0 \rightarrow$ extracted from fixed order

Relation to q_T factorization

• Recall: $\sigma(\Theta) = \int \mathrm{d}Y \,\mathrm{d}q_T \,A(q_T,Y;\Theta) W(q_T,Y)$

Expand acceptance and hadronic structure function as

$$egin{aligned} &A(q_T,Y;\Theta) = A^{(0)}(Y;\Theta) \quad imes \left[1 + \mathcal{O}\Big(rac{q_T}{m_H}\Big)
ight] \ &W(q_T,Y) = W^{(0)}(q_T,Y) imes \left[1 + \mathcal{O}\Big(rac{q_T^2}{m_H^2}\Big)
ight] \end{aligned}$$

Presence of linear terms first pointed out in [ME, Tackmann '19]

• Strict TMD factorization:

$$rac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}q_T} = \int \mathrm{d}Y A^{(0)}(Y;\Theta) W^{(0)}(q_T,Y)$$

Isolate linear fiducial power corrections:

$$rac{\mathrm{d}\sigma^{\mathrm{fpc}}}{\mathrm{d}q_T} = \int \mathrm{d}Yig[A(q_T,Y;\Theta) - A^{(0)}(Y;\Theta)ig]W^{(0)}(q_T,Y)$$

 Contains all linear (and more) power corrections [ME, Michel, Stewart, Tackmann '20]

Numerical illustration

• Isolate linear fiducial power corrections:

 $rac{\mathrm{d}\sigma^{\mathrm{fpc}}}{\mathrm{d}q_T} = \int \mathrm{d}Yig[A(q_T,Y;\Theta) - A^{(0)}(Y;\Theta)ig]W^{(0)}(q_T,Y)$

 Isolate their effect in the fixed-order expansion of σ(Θ) and compare to inclusive cross section σ

 $\sigma_{
m incl}^{
m FO} = 13.80 \left[1 + 1.291 + 0.783 + 0.299\right]
m pb$

 $\sigma_{
m fid}^{
m FO} = 6.928 \left[1 + 1.429 + 0.723 + 0.481\right]
m pb$

 $= 6.928 \left[1 + (1.300 + 0.129_{\rm fpc}) + (0.784 - 0.061_{\rm fpc}) + (0.331 + 0.150_{\rm fpc})\right] \rm pb$

• Fiducial power corrections show no convergence, while remainder is very similar to inclusive case

See also [Alekhin, Kardos, Moch, Trócsányi '21] for detailed numerical study for Drell-Yan

q_T resummation and total cross section

Isolate linear fiducial power corrections:

```
rac{\mathrm{d}\sigma^{\mathrm{fpc}}}{\mathrm{d}q_T} = \int \mathrm{d}Yig[A(q_T,Y;\Theta) - A^{(0)}(Y;\Theta)ig]W^{(0)}(q_T,Y)
```

• Fiducial power corrections show no convergence, while remainder is very similar to inclusive case

• Good news: fiducial corrections can be resummed in the standard fashion

• Only requires standard TMD resummation of $W^{(0)}(q_T, Y)$

• Total cross section becomes derived quantity from resummed q_T spectrum

q_T resummation and total cross section

Isolate linear fiducial power corrections:

 $rac{\mathrm{d}\sigma^{\mathrm{fpc}}}{\mathrm{d}q_T} = \int \mathrm{d}Yig[A(q_T,Y;\Theta) - A^{(0)}(Y;\Theta)ig]W^{(0)}(q_T,Y)$

• Fiducial power corrections show no convergence, while remainder is very similar to inclusive case

• Good news: fiducial corrections can be resummed in the standard fashion

• Only requires standard TMD resummation of $W^{(0)}(q_T, Y)$

• Total cross section becomes derived quantity from resummed q_T spectrum

Remark on [Salam, Slade '21]:

• By using DDT formula $W^{(0)}(q) \sim \frac{4\alpha_s C_A L}{\pi q_T} e^{-2\alpha_s C_A L^2/\pi}$, can show that $\sigma^{\rm fpc} \sim \sum_n (-1)^{n+1} \frac{(2n!)}{2(n!)} \Big(\frac{2\alpha_s C_A}{\pi}\Big)^n$

Fixed-order is factorially divergent and requires resummation

Alternative approach: employ cuts that avoid linear corrections
 → requires agreement with experimentalists on suitable cuts

Higgs q_T spectrum and total cross section at N³LO+N³LL'

Setup

Resummed q_T spectrum:

Split q_T spectrum as

$$rac{\mathrm{d}\sigma}{\mathrm{d}q_T} = rac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}q_T} + rac{\mathrm{d}\sigma^{\mathrm{nons}}}{\mathrm{d}q_T}$$

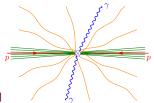
• Singular cross section captures LP and fiducial corrections:

$$rac{\mathrm{d} \sigma^{\mathrm{sing}}}{\mathrm{d} q_T} = rac{\mathrm{d} \sigma^{(0)}}{\mathrm{d} q_T} + rac{\mathrm{d} \sigma^{\mathrm{fpc}}}{\mathrm{d} q_T} = \int \mathrm{d} Y \, A(q_T,Y;\Theta) W^{(0)}(q_T,Y)$$

• Standard TMD factorization [Collins, Soper, Sterman '85; Becher, Neubert '10; Collins '11; Echevarria, Idilbi, Scimemi '11, Chiu, Jain, Neill, Rothstein '12]

 $W^{(0)}(q_T,Y) = H(m_H^2,\mu) \int \! \mathrm{d}^2 ec{b}_T \, e^{iec{q}_T\cdotec{b}_T} B_g^{\mu
u}(x_a,ec{b}_T,\mu,
u) B_{g\,\mu
u}(x_b,ec{b}_T,\mu,
u) S(b_T,\mu,
u)$

- Implement N³LL evolution of virtuality (μ) and rapidity (ν) RGE in b_T space
 - Hybrid profile scales to turn off resummation [Lustermans, JM, Tackmann, Waalewijn '19]
- Three-loop ingredients for N³LL' accuracy:
 - Form factor [Baikov et al. '09; Lee et al., Gehrmann et al. '10]
 - ▶ Beam function [ME, Mistlberger, Vita; Luo, Yang, Zhu, Zhu '20] → see G. Vita's talk
 - Soft function [Li, Zhu '16]



Setup

Nonsingular corrections

Split q_T spectrum as

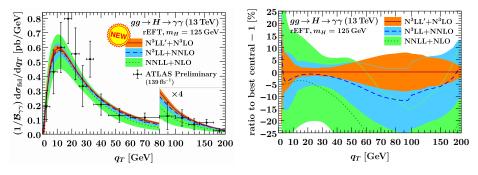
$$rac{\mathrm{d}\sigma}{\mathrm{d}q_T} = rac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}q_T} + rac{\mathrm{d}\sigma^{\mathrm{nons}}}{\mathrm{d}q_T}$$

• Nonsingular terms from fixed order:

$$rac{\mathrm{d}\sigma^{\mathrm{nons}}}{\mathrm{d}q_T} = \int \mathrm{d}Y\,A(q_T,Y;\Theta)ig[W^{(2)}(q_T,Y)+\cdotsig] = igg[rac{\mathrm{d}\sigma_{\mathrm{FO}}}{\mathrm{d}q_T} - rac{\mathrm{d}\sigma^{\mathrm{sing}}_{\mathrm{FO}}}{\mathrm{d}q_T}igg]_{q_T>0}$$

- $\sigma_{\rm FO}$ obtained from H+1j at NNLO
 - Obtaining stable results is hard (particularly at NNLO)
 - At NLO: renormalize & implement bare analytic results [Dulat, Lionetti, Mistlberger, Pelloni, Specchia '17]
 - At NNLO: fit NNLOjet data to known functional form of nonsingular terms [Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier '15-16; as used in Chen et al; Bizoń et al. '18]
- Fitted results allow us to apply nonsingular correction down to $q_T
 ightarrow 0$
 - Crucial for integrating over q_T to obtain total cross section
 - n.b. for the experts: we use differential q_T subtractions, not a q_T slicing which suffers from huge corrections

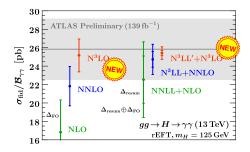
Results: fiducial q_T spectrum at N³LL'+N³LO



- Total uncertainty is $\Delta_{tot} = \Delta_{q_T} \oplus \Delta_{\varphi} \oplus \Delta_{match} \oplus \Delta_{FO} \oplus \Delta_{nons}$ [See also ME, Michel, Stewart, Tackmann, 2006.11382 for details]
- Observe excellent perturbative convergence & uncertainty coverage
 - Crucial to consider every variation to probe all parts of the prediction
- Divide $H \to \gamma \gamma$ branching ratio $\mathcal{B}_{\gamma \gamma}$ out of data [LHC Higgs Cross Section WG, 1610.07922]
- Data are corrected for other production channels, photon isolation efficiency [ATLAS, 1802.04146]

Results: fiducial cross section at N³LL'+N³LO

• Integrating the (un-)resummed q_T spectrum yields total cross section:



- Larger N³LO corrections to fiducial than to inclusive cross section
 - Caused by fiducial power corrections & must be resummed
- Resummation restores convergence
 - Dedicated estimate of resummation uncertainty Δ_{resum}
- First direct comparison to experimentally measured total Higgs cross section at genuine three-loop order

Conclusion

Conclusion

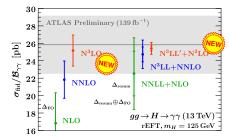
Resummation effects in the total cross section

- Showed that fiducial cuts generically induce linear power corrections
- These are logarithmically divergent as $q_T
 ightarrow 0$ and must be resummed
 - Easily understood as q_T-dependent shape of acceptance
 - Total cross section becomes derived quantity from qT spectrum
- Standard TMD resummation sufficient: $\sigma(\Theta) = \int d^4q A(q;\Theta) W^{(0)}(q) + \cdots$

• Outlook: Also applies to other leptonic observables (e.g. p_T^{γ}) and fiducial Drell-Yan production

Higgs production at N³LO+N³LL':

- Presented first prediction of Higgs q_T spectrum and total cross section for fiducial $gg \rightarrow H \rightarrow \gamma\gamma$ at the LHC
- First direct comparison to LHC data at genuine three-loop order



Conclusion

Resummation effects in the total cross section

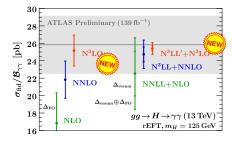
- Showed that fiducial cuts generically induce linear power corrections
- These are logarithmically divergent as $q_T
 ightarrow 0$ and *must* be resummed
 - Easily understood as q_T-dependent shape of acceptance
 - Total cross section becomes derived quantity from qT spectrum
- Standard TMD resummation sufficient: $\sigma(\Theta) = \int d^4q A(q;\Theta) W^{(0)}(q) + \cdots$

• Outlook: Also applies to other leptonic observables (e.g. p_T^{γ}) and fiducial Drell-Yan production

Higgs production at N³LO+N³LL':

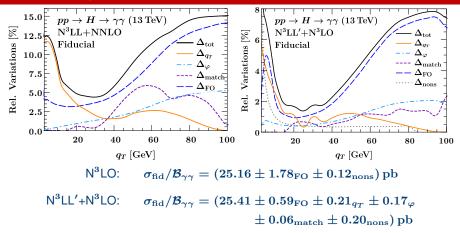
- Presented first prediction of Higgs q_T spectrum and total cross section for fiducial $gg \rightarrow H \rightarrow \gamma\gamma$ at the LHC
- First direct comparison to LHC data at genuine three-loop order

Thank you for your attention!



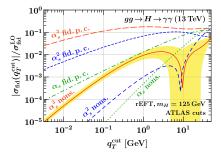
Backup slides

Uncertainty breakdown



 $\begin{array}{ll} \Delta_{q_T} & \mbox{36 independent scale variations in } W^{(0)} \mbox{ factorization} \\ \Delta_{\varphi} & \mbox{Vary phase of hard scale over } \arg \mu_H \in \{\pi/4, 3\pi/4\} \\ \Delta_{\rm match} & \mbox{Vary transition points governing resummation turn-off} \\ \Delta_{\rm FO} & \mbox{Vary } \mu_R/m_H \in \{1/2, 2\} \mbox{ (dominates over } \mu_F \mbox{ due to overall } \alpha_s^2) \\ \Delta_{\rm nons} & \mbox{Uncertainty on nonsingular extraction} \end{array}$

Comparison to other methods: q_T slicing



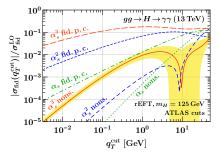
Slicing approach to q_T subtractions:

[used e.g. in Cieri, Chen, Gehrmann, Glover, Huss, 1807.11501; Camarda, Cieri, Ferrera, 2103.04974]

$$\sigma = \underbrace{\sigma^{(0)}(q_T^{\text{cut}}) + \sigma^{\text{fpc}}(q_T^{\text{cut}})}_{=\sigma^{\text{sing}}(q_T^{\text{cut}})} + \sigma^{\text{nons}}(q_T^{\text{cut}}) + \int_{q_T^{\text{cut}}} \mathrm{d}q_T \, \frac{\mathrm{d}\sigma_{\text{FO}_1}}{\mathrm{d}q_T}$$

- Slicing uses finite $q_T^{\text{cut}} \sim 2 \text{ GeV}$ and neglects both $\sigma^{\text{fpc}}(q_T^{\text{cut}}), \sigma^{\text{nons}}(q_T^{\text{cut}}) \approx 0$
- This is a catastrophic approximation even at $lpha_s^2$, and definitely at $lpha_s^3$
- Even without $\sigma^{
 m fpc}$ (e.g., without cuts), this is a bad approximation at $lpha_s^3$
 - q_T^{cut} variations only scan local maximum around $2 \, \text{GeV} \dots$

Comparison to other methods: Projection to Born



Projection-to-Born method:

[used e.g. in Chen, Gehrmann, Glover, Huss, Mistlberger, Pelloni, 2102.07607]

$$rac{\mathrm{d}\sigma}{\mathrm{d}Y} = A(0,Y) \, rac{\mathrm{d}\sigma_{\mathrm{incl}}}{\mathrm{d}Y} + \int_{pprox q_T^{\mathrm{cut}}} \mathrm{d}q_T \left[A(q_T,Y) - A(0,Y)
ight] W(q_T,Y)$$

- First term from analytic (threshold expansion of) inclusive rapidity spectrum
- Second term numerically from H+1j MC, dominated by $\sigma^{
 m fpc}$ at small q_T
- Need to integrate down to $q_T^{\text{cut}} \ll 0.1 \text{GeV}$ to get error below 10% of $\sigma_{\text{LO}}^{\text{fid}}$! [See also Salam, Slade, 2106.08329 for an explicit/analytic estimate at double-logarithmic level]

Fitting nonsingular corrections

• Split q_T spectrum as $\frac{\mathrm{d}\sigma}{\mathrm{d}q_T} = \frac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}q_T} + \frac{\mathrm{d}\sigma^{\mathrm{nons}}}{\mathrm{d}q_T}$

Nonsingular terms from fixed order:

$$rac{\mathrm{d}\sigma^{\mathrm{nons}}}{\mathrm{d}q_T} = \int \mathrm{d}Y\,A(q_T,Y;\Theta)ig[W^{(2)}(q_T,Y)+\cdotsig] = igg[rac{\mathrm{d}\sigma_{\mathrm{FO}}}{\mathrm{d}q_T} - rac{\mathrm{d}\sigma^{\mathrm{sing}}_{\mathrm{FO}}}{\mathrm{d}q_T}igg]_{q_T>0}$$

Obtaining stable results is hard (particularly at NNLO)

Key idea

Fit nonsingular data to known form at subleading power and integrate analytically:

$$\left. q_T rac{{
m d}\sigma_{
m FO}^{
m nons}}{{
m d}q_T}
ight|_{lpha_8^n} = rac{q_T^2}{m_H^2} \sum_{k=0}^{2n-1} \Bigl(a_k + b_k rac{q_T}{m_H} + c_k rac{q_T^2}{m_H^2} + \cdots \Bigr) \ln^k rac{q_T^2}{m_H^2}$$

- Include higher-power b_k, c_k to get unbiased a_k
- Allows us to use more precise data at higher q_T as lever arm in the fit
- Include dedicated fit uncertainty
- Fit procedure tested extensively in [Moult, Rothen, Stewart, Tackmann, Zhu '15-'16]

Fit results

Inclusive:

Fiducial:

