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Do we understand quarkonium production?

Understanding of hadronisation of the QQ̄-pair (Q = b, c) into heavy
quarkonium turned-out to be challenging
theoretical/phenomenological problem (recent reviews: hep-ph/2012.14161,

hep-ex/2011.15005, hep-ph/1903.09185). Do we understand which states of the
QQ̄-pair are important?

For some processes – yes! The importance of the color-singlet
QQ̄-state has been established:

◮ Photoproduction of prompt J/ψ at 0 < z < 0.9.

◮ Bulk of the double prompt hadroproduction of J/ψ

and (somewhat unexpectedly...)

◮ Prompt ηc hadroproduction

Probability (=LDME) of hadronisation of the color-singlet QQ̄-pair to
the physical state is ∝ |R(′)(r = 0)|2, which is relatively well
constrained, in comparison to CO LDMEs. No free parameters!?

3 / 23



Is 1S
(1)
0 -dominance in ηc-production a bug or a feature?

The ηc hadroproduction was found

to be dominated by the cc̄
[
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[Butenschoen, He, Kniehl, 2015] This is a
problem for NRQCD factorization,
because roughly the same
contribution of color-octet states
as for J/ψ was expected.

◮ Color-octet LDMEs for ηc are
related (up to v2 corrections)
to LDMEs of J/ψ by
heavy-quark spin symmetry

(long wavelength gluons do not “see” heavy

quark’s spin). Strong HQSS
violation?

◮ HQSS is quite “good”
symmetry, manifests itself e.g.
in hadron spectrum as
closeness of D and D∗ (B and
B∗) masses.

◮ My speculation: HQSS maybe

inapplicable to production,

because mQ is not the largest

scale in the problem. There is a

lot of “soft” gluons with

mc,b ≪ Eg ≪ pT .
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Is NLO QCD prediction for ηc production perturbatively

stable?

If we want to calculate the pT -integrated total or y-dfferential cross
section, then NO:
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Why?
Collinear factorization for total CS for the state m =2S+1 L

(0)
J :

σ[m](
√
S) =

1∫

zmin

dz

z
Lij(z, µF )σ̂

[m]
ij (z, µF , µR),

where i, j = q, q̄, g, z =M2/ŝ and partonic luminosity:

Lij(z, µF ) =

+ymax∫

−ymax

dy f̃i

(
M√
Sz
ey, µF

)

f̃j

(
M√
Sz
e−y, µF

)

,

with f̃j(x, µF ) – momentum density PDFs.
NLO coefficient function [Kuhn, Mirkes, 93’; Petrelli et.al., 98’] in the z → 0 limit

σ̂
[m]
ij = σ

[m]
LO

[

A
[m]
0 δ(1− z) + Cij

αs(µR)

π

(

A
[m]
0 ln

M2

µ2
F

+A
[m]
1

)

+O(zαs, α
2
s)

]

,

where Cgg = 2CA = 2Nc, Cqg = Cgq = CF = (N2
c − 1)/(2Nc), Cqq̄ = 0

and A
[m]
1 < 0.
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Why?
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Optimal µF choice?
It is natural to choose µF such a way, that the negative A

[m]
1 is

cancelled [Lansberg, Ozcelik, 2020]:

µ̂F =M exp

[

A
[m]
1

2A
[m]
0

]

,

is equivalent to resummation of some of the terms ∝ αn
s lnn−1 1

z

(more on this later). The result (red curve):

Is the systematic resummation of ∝ αn
s lnn−1 1

z
possible?
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High-Energy factorization in a nutshell
High-Energy Factorization [Collins, Ellis, 91’; Catani, Ciafaloni, Hautmann, 91’,94’]:

P+ P−

P+x̄1 P−x̄2

qT+ qT−

︸ ︷︷ ︸

σ̂

p+, p−

Y+ Y−H

fg(x̄1, µF ) fg(x̄2, µF )

Small parameter z =
M2

ŝ
=
M2

M2
T

z+z−, where M2
T =M2 + p2

T and

z+ =
p+
P+x̄1

, z− =
p−
P−x̄2

Using the BFKL formalism one resums corrections to σ̂ enhanced by

Y± = ln

(
µY

|qT±|
1− z±
z±

)

≃
✟✟✟✟❍❍❍❍
ln

µY

|qT±|
+ln

1

z±
, in LP w.r.t.

�
�
�❅

❅
❅

|qT±|
µY

z±
1− z±

where µY = p±e
∓yH ∼MT , in inclusive observables.
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Resummed coefficient function

σ̂
[m], HEF
ij (z, µF , µR) =

∞∫

−∞

dη

∞∫

0

dq2
T1dq

2
T2 Cgi

(
MT

M

√
zeη,q2

T1, µF , µR

)

×Cgj
(
MT

M

√
ze−η,q2

T2, µF , µR

) 2π∫

0

dφ

2

H [m](q2
T1,q

2
T2, φ)

M4
T

,

The coefficient functions H [m] are known at LO in αs [Hagler et.al, 2000;

Kniehl, Vasin, Saleev 2006] for m = 1S
(1,8)
0 , 3P

(1,8)
J , 3S

(8)
1 .
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LLA evolution w.r.t. ln 1/z
In the LL(ln 1/z)-approximation, the Y = ln 1/z-evolution equation
for collinearly un-subtracted C̃-factor has the form:

C̃(x,qT ) = δ(1−z)δ(q2
T )+α̂s

1∫

x

dz

z

∫

d2−2ǫkTK(k2
T ,q

2
T )C̃

(x

z
,qT − kT

)

with α̂s = αsCA/π and

K(k2
T ,p

2
T ) = δ

(2−2ǫ)(kT )
(p2

T )
−ǫ

ǫ

(4π)ǫΓ(1 + ǫ)Γ2(1− ǫ)

Γ(1− 2ǫ)
+

1

π(2π)−2ǫk2
T

.

It is convenient to go from (z,qT )-space to (N,xT )-space:

C̃(N,xT ) =

∫

d
2−2ǫ

qT e
ixT qT

1
∫

0

dx x
N−1

C̃(x,qT ),

because:

◮ Mellin convolutions over z turn into products:
∫

dz
z

→
1
N

◮ Large logs map to poles at N = 0: α
k+1
s lnk 1

z
→

αk+1
s

Nk+1

◮ All collinear divergences are contained inside C in xT -space.
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Collinear divergences

Exact (up to terms O(ǫ)) solution for C̃ can be obtained [Catani,

Hautmann, 94’] . It contains collinear divergences, which can be removed
(absorbed into PDFs) in the MS-scheme to all orders in αs:

Z
−1
coll. = exp






−
1

ǫ

α̂sSǫµ
−2ǫ
F

∫

0

dα

α
γgg(α,N)






, Sǫ = exp [ǫ (ln 4π − γE)] ,

C̃(N,xT ) = Z
−1
coll.C(N,xT , µF )
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Exact LL solution
In (N,qT )-space, subtracted C, which resums all terms ∝ (α̂s/N)

n

has the form:

C(N,qT , µF ) = R(γgg(N,αs))
γgg(N,αs)

q2
T

(
q2
T

µ2
F

)γgg(N,αs)

,

where γgg(N,αs) is the solution of [Jaroszewicz, 82’]:

α̂s

N
χ(γgg(N,αs)) = 1, with χ(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ),

where ψ(γ) = d ln Γ(γ)/dγ – Euler’s ψ-function. The first few terms:

γgg(N,αs) =
α̂s

N
︸︷︷︸

DLA

+2ζ(3)
α̂4
s

N4
+ 2ζ(5)

α̂6
s

N6
+ . . .

︸ ︷︷ ︸

LLA

The function R(γ) is

R(γgg(N,αs)) = 1 +O(α3
s).
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Doubly-logarithmic approximation

Taking the LO result for γgg(N,αs) → γN =
α̂s

N
we obtain:

CDL(N,qT , µF ) =
γN
q2
T

(
q2
T

µ2
F

)γN

,

which resums
(

α̂s

N
ln

q2

T

µ2

F

)n

↔ α̂n
s ln

n
(

q2

T

µ2

F

)

lnn−1
(
1
z

)
.

In (z,qT )-space it is [Blümlein, 94’]:

CDL(z,qT , µF ) =
α̂s

q2
T







J0

(

2

√

α̂s ln
µ2

F

q2

T

ln 1
z

)

, |qT | < µF ,

I0

(

2

√

α̂s ln
q2

T

µ2

F

ln 1
z

)

, |qT | > µF ,

where J0/I0 is the Bessel function of the first/second kind.
This approximation should be used with standard LO, NLO,
NNLO PDFs, because DGLAP evolution is taken at fixed
order (LO, NLO, NNLO).
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Does this work?

The resummation has to reporduce the A
[m]
1 NLO coefficient

when expanded up to NLO in αs. And it does. We have
performed expansion up to NNLO:

State A
[m]
0 A

[m]
1 A

[m]
2 B

[m]
2

1S0 1 −1 π2

6
π2

6
3S1 0 1 0 π2

6
3P0 1 −

43

27

π2

6 + 2
3

π2

6 + 40
27

3P1 0 5
54 − 1

9 − 2
9

3P2 1 −

53

36

π2

6 + 1
2

π2

6 + 11
9

for e.g.

σ̂
[m], HEF

gg (z → 0) = σ
[m]
LO

{

A
[m]
0 δ(1− z) +

αs

π
2CA

[

A
[m]
1 + A

[m]
0 ln

M2

µ2
F

]

+
(αs

π

)2

C
2
A ln

1

z

[

2A
[m]
2 +B

[m]
2 + 4A

[m]
1 ln

M2

µ2
F

+ 2A
[m]
0 ln2 M2

µ2
F

]

+O(α3
s)

}

,
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Connection with µ̂F

The HEF resummation would be equivalent to the µ̂F prescription,
if the HEF CF H [m](q2

T1,q
2
T2 = 0)/M4

T was ∝ θ(µ̂2
F − q2

T1). But it is
not:
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Matching with NLO of CF
The HEF works only at z ≪ 1, misses power corrections O(z), while
NLO CF is exact in z, but only NLO in αs. We need to match
them.

◮ Simplest prescription: just subtract the overlap at z ≪ 1:

σ
[m]
NLO+HEF = σ

[m]
LO CF

+

1∫

zmin

dz

z

[

σ̌
[m],ij
HEF

(z)

+σ̂
[m],ij
NLO CF

(z)− σ̂
[m],ij
NLO CF

(0)
]

Lij(z),

◮ Or introduce smooth weights:

σ
[m]
NLO+HEF = σ

[m]
LO CF

+

1∫

zmin

dz

{[

σ̌
[m],ij
HEF

(z)
Lij(z)

z

]

wij
HEF(z)

+

[

σ̂
[m],ij
NLO CF

(z)
Lij(z)

z

]

(1− wij
HEF(z))

}

,
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Inverse error weighting method

In the InEW method [Eichevarria, et.al., 2018] the weights are calculated
from estimates of the error of each contribution:

wij
HEF(z) =

[∆σij
HEF(z)]

−2

[∆σij
HEF(z)]

−2 + [∆σij
CF(z)]

−2
,

◮ For ∆σCF we take the α2
s ln

1
z

term obtained from HEF
+O(α2

s)-term which we vary.

◮ For ∆σHEF we take the
αsO(z) part of the NLO CF
result +O(α2

s)-term which we
vary.

0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�S=2000.GeV,
CT18NLO

W
C
P
M
(
z
)

z

gg, ✁HEF=0, ✁CPM=0
gg, ✁HEF=1, ✁CPM=-1
gg, ✁HEF=-1, ✁CPM=1
qg, ✁HEF=0, ✁CPM=0

qg, ✁HEF=1, ✁CPM=-1
qg, ✁HEF=-1, ✁CPM=1

qqbar, ✁HEF=0, ✁CPM=0
qqbar, ✁HEF=1, ✁CPM=-1
qqbar, ✁HEF=-1, ✁CPM=1

18 / 23



Matching plots
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Matched results for ηc

NLO NLO+HEF DLA
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Matched results for ηb

NLO NLO+HEF DLA
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The PDF dependence

ηc ηb
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Conclusions and outlook

◮ The high-energy instability of the NLO cross section is related
with lack of the αn

s lnn−1 1
z

corrections in σ̂(z) at z ≪ 1.

◮ The HEF at DLA is the formalism to solve this problem if the
standard fixed-order PDFs are to be used.

◮ Matching between NLO CF (finite z) and HEF (z ≪ 1) has to be
performed, but there is no strong sensitivity to matching
procedure.

◮ Scale-uncertainty is reduced, the K-factor is flat at high energy.
But the uncertainty of NLO CF+DLA HEF calculation is still
too large.

◮ NLO CF+NLL HEF calculation is in progress.

◮ Future plans: y-distributions, production of χcJ ,
photoproduction...

Thank you for your attention!

23 / 23



Backup: Higher-twist effects
Convolution of C-factor with the
Gaussian in kT :

∫

d2kT

πσ2
T

exp

[

−
k2
T

σ2
T

]

C
DLA
gg (z, (qT+kT )

2
, µF , µR)
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The correction is O(σ2
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2), so it
is higher twist effect.
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Backup: DGLAP Pgg at small z
Plot from hep-ph/1607.02153 with my curve (in red) for LL

γgg(N) = α̂s

N
+ 2ζ(3)

α̂4

s

N4 + 2ζ(5)
α̂6

s

N6 + . . .

The “LO+LL” and “NLO+NLL” curves represent a form of matching
between DGLAP and BFKL expansions, in a scheme by Altarelli,
Ball and Forte. 25 / 23


	

