Curing high-energy instability of the NLO heavy-quarkonium hadroproduction cross section with High-Energy Factorization

Jean-Philippe Lansberg ${ }^{1}$, Maxim Nefedov ${ }^{2}$, Melih Ozcelik 3

REF-2021
November 16 ${ }^{\text {th. }}, 2021$

[^0]
Outline

1. Why η_{c} ?
2. High-energy instability of the NLO cross section
3. High-Energy Factorization \Rightarrow resummation of $\ln 1 / z$
4. Reproducing NLO and NNLO results at $z \rightarrow 0$ from HEF
5. Matching HEF and NLO CPM calculations

Do we understand quarkonium production?

Understanding of hadronisation of the $Q \bar{Q}$-pair ($Q=b, c$) into heavy quarkonium turned-out to be challenging theoretical/phenomenological problem (recent reviews: hep-ph/2012.14161, hep-ex/2011.15005, hep-ph/1903.09185). Do we understand which states of the $Q \bar{Q}$-pair are important?

For some processes - yes! The importance of the color-singlet $Q \bar{Q}$-state has been established:

- Photoproduction of prompt J / ψ at $0<z<0.9$.
- Bulk of the double prompt hadroproduction of J / ψ and (somewhat unexpectedly...)
- Prompt η_{c} hadroproduction

Probability (=LDME) of hadronisation of the color-singlet $Q \bar{Q}$-pair to the physical state is $\propto\left|R^{\left({ }^{\prime}\right)}(r=0)\right|^{2}$, which is relatively well constrained, in comparison to CO LDMEs. No free parameters!?

Is ${ }^{1} S_{0}^{(1)}$-dominance in η_{c}-production a bug or a feature?

The η_{c} hadroproduction was found to be dominated by the $c \bar{c}\left[{ }^{1} S_{0}^{(1)}\right]$ state:

[Butenschoen, He, Kniehl, 2015] This is a problem for NRQCD factorization, because roughly the same contribution of color-octet states as for J / ψ was expected.

- Color-octet LDMEs for η_{c} are related (up to v^{2} corrections) to LDMEs of J / ψ by heavy-quark spin symmetry
(long wavelength gluons do not "see" heavy quark's spin). Strong HQSS violation?
- HQSS is quite "good" symmetry, manifests itself e.g. in hadron spectrum as closeness of D and D^{*} (B and B^{*}) masses.
- My speculation: HQSS maybe inapplicable to production, because m_{Q} is not the largest scale in the problem. There is a lot of "soft" gluons with $m_{c, b} \ll E_{g} \ll p_{T}$.

Is NLO QCD prediction for η_{c} production perturbatively stable?

If we want to calculate the p_{T}-integrated total or y-dfferential cross section, then NO:

Why?

Collinear factorization for total CS for the state $m={ }^{2 S+1} L_{J}^{(0)}$:

$$
\sigma^{[m]}(\sqrt{S})=\int_{z_{\min }}^{1} \frac{d z}{z} \mathcal{L}_{i j}\left(z, \mu_{F}\right) \hat{\sigma}_{i j}^{[m]}\left(z, \mu_{F}, \mu_{R}\right),
$$

where $i, j=q, \bar{q}, g, z=M^{2} / \hat{s}$ and partonic luminosity:

$$
\mathcal{L}_{i j}\left(z, \mu_{F}\right)=\int_{-y_{\max }}^{+y_{\max }} d y \tilde{f}_{i}\left(\frac{M}{\sqrt{S z}} e^{y}, \mu_{F}\right) \tilde{f}_{j}\left(\frac{M}{\sqrt{S z}} e^{-y}, \mu_{F}\right),
$$

with $\tilde{f}_{j}\left(x, \mu_{F}\right)$ - momentum density PDFs.
NLO coefficient function [Kuhn, Mirkes, 93^{\prime}; Petrelli et.al., $\left.98^{\prime}\right]$ in the $z \rightarrow 0$ limit

$$
\hat{\sigma}_{i j}^{[m]}=\sigma_{\mathrm{LO}}^{[m]}\left[A_{0}^{[m]} \delta(1-z)+C_{i j} \frac{\alpha_{s}\left(\mu_{R}\right)}{\pi}\left(A_{0}^{[m]} \ln \frac{M^{2}}{\mu_{F}^{2}}+A_{1}^{[m]}\right)+O\left(z \alpha_{s}, \alpha_{s}^{2}\right)\right],
$$

where $C_{g g}=2 C_{A}=2 N_{c}, C_{q g}=C_{g q}=C_{F}=\left(N_{c}^{2}-1\right) /\left(2 N_{c}\right), C_{q \bar{q}}=0$ and $A_{1}^{[m]}<0$.

Why?

Optimal μ_{F} choice?

It is natural to choose μ_{F} such a way, that the negative $A_{1}^{[m]}$ is cancelled [Lansberg, Ozcelik, 2020]:

$$
\hat{\mu}_{F}=M \exp \left[\frac{A_{1}^{[m]}}{2 A_{0}^{[m]}}\right],
$$

is equivalent to resummation of some of the terms $\propto \alpha_{s}^{n} \ln ^{n-1} \frac{1}{z}$ (more on this later). The result (red curve):

Is the systematic resummation of $\propto \alpha_{s}^{n} \ln ^{n-1} \frac{1}{z}$ possible?

High-Energy factorization in a nutshell

High-Energy Factorization [Collins, Ellis, 91'; Catani, Ciafaloni, Hautmann, 91',94ㄱ]:

Small parameter $z=\frac{M^{2}}{\hat{s}}=\frac{M^{2}}{M_{T}^{2}} z_{+} z_{-}$, where $M_{T}^{2}=M^{2}+\mathbf{p}_{T}^{2}$ and

$$
z_{+}=\frac{p_{+}}{P_{+} \bar{x}_{1}}, z_{-}=\frac{p_{-}}{P_{-} \bar{x}_{2}}
$$

Using the BFKL formalism one resums corrections to $\hat{\sigma}$ enhanced by
$Y_{ \pm}=\ln \left(\frac{\mu_{Y}}{\left|\mathbf{q}_{T \pm}\right|} \frac{1-z_{ \pm}}{z_{ \pm}}\right) \simeq \frac{\mu_{Y}}{\frac{\ln T \pm}{}}+\ln \frac{1}{z_{ \pm}}$, in LP w.r.t. $\frac{\left|\mathbf{q}_{T \pm}\right|}{\mu_{Y}} \frac{z_{ \pm}}{1-z_{ \pm}}$
where $\mu_{Y}=p_{ \pm} e^{\mp y \mathcal{H}} \sim M_{T}$, in inclusive observables.

Resummed coefficient function

$$
\begin{aligned}
& \hat{\sigma}_{i j}^{[m],} \mathrm{HEF}_{\left(z, \mu_{F}, \mu_{R}\right)=\int_{-\infty}^{\infty} d \eta \int_{0}^{\infty} d \mathbf{q}_{T 1}^{2} d \mathbf{q}_{T 2}^{2} \mathcal{C}_{g i}\left(\frac{M_{T}}{M} \sqrt{z} e^{\eta}, \mathbf{q}_{T 1}^{2}, \mu_{F}, \mu_{R}\right)}^{\times \mathcal{C}_{g j}\left(\frac{M_{T}}{M} \sqrt{z} e^{-\eta}, \mathbf{q}_{T 2}^{2}, \mu_{F}, \mu_{R}\right) \int_{0}^{2 \pi} \frac{d \phi}{2} \frac{H^{[m]}\left(\mathbf{q}_{T 1}^{2}, \mathbf{q}_{T 2}^{2}, \phi\right)}{M_{T}^{4}},}
\end{aligned}
$$

The coefficient functions $H^{[m]}$ are known at LO in α_{s} [Hagler et.al, 2000; Knieh, Vasin, Saleev 2006] for $m={ }^{1} S_{0}^{(1,8)},{ }^{3} P_{J}^{(1,8)},{ }^{3} S_{1}^{(8)}$.

LLA evolution w.r.t. $\ln 1 / z$

In the $\mathrm{LL}(\ln 1 / z)$-approximation, the $Y=\ln 1 / z$-evolution equation for collinearly un-subtracted $\tilde{\mathcal{C}}$-factor has the form:

$$
\tilde{\mathcal{C}}\left(x, \mathbf{q}_{T}\right)=\delta(1-z) \delta\left(\mathbf{q}_{T}^{2}\right)+\hat{\alpha}_{s} \int_{x}^{1} \frac{d z}{z} \int d^{2-2 \epsilon} \mathbf{k}_{T} K\left(\mathbf{k}_{T}^{2}, \mathbf{q}_{T}^{2}\right) \tilde{\mathcal{C}}\left(\frac{x}{z}, \mathbf{q}_{T}-\mathbf{k}_{T}\right)
$$

with $\hat{\alpha}_{s}=\alpha_{s} C_{A} / \pi$ and

$$
K\left(\mathbf{k}_{T}^{2}, \mathbf{p}_{T}^{2}\right)=\delta^{(2-2 \epsilon)}\left(\mathbf{k}_{T}\right) \frac{\left(\mathbf{p}_{T}^{2}\right)^{-\epsilon}}{\epsilon} \frac{(4 \pi)^{\epsilon} \Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}{\Gamma(1-2 \epsilon)}+\frac{1}{\pi(2 \pi)^{-2 \epsilon} \mathbf{k}_{T}^{2}}
$$

It is convenient to go from $\left(z, \mathbf{q}_{T}\right)$-space to $\left(N, \mathbf{x}_{T}\right)$-space:

$$
\tilde{\mathcal{C}}\left(N, \mathbf{x}_{T}\right)=\int d^{2-2 \epsilon} \mathbf{q}_{T} e^{i \mathbf{x}_{T} \mathbf{q}_{T}} \int_{0}^{1} d x x^{N-1} \tilde{\mathcal{C}}\left(x, \mathbf{q}_{T}\right)
$$

because:

- Mellin convolutions over z turn into products: $\int \frac{d z}{z} \rightarrow \frac{1}{N}$
- Large logs map to poles at $N=0: \alpha_{s}^{k+1} \ln ^{k} \frac{1}{z} \rightarrow \frac{\alpha_{s}^{k+1}}{N^{k+1}}$
- All collinear divergences are contained inside \mathcal{C} in \mathbf{x}_{T}-space.

Collinear divergences

Exact (up to terms $O(\epsilon)$) solution for $\tilde{\mathcal{C}}$ can be obtained |Catani, Hautmann, 9^{4}. It contains collinear divergences, which can be removed (absorbed into PDFs) in the $\overline{M S}$-scheme to all orders in α_{s} :

$$
\begin{gathered}
Z_{\text {coll. }}^{-1}=\exp \left[-\frac{1}{\epsilon} \int_{0}^{\hat{\alpha}_{s} S_{\epsilon} \mu_{F}^{-2 \epsilon}} \frac{d \alpha}{\alpha} \gamma_{g g}(\alpha, N)\right], S_{\epsilon}=\exp \left[\epsilon\left(\ln 4 \pi-\gamma_{E}\right)\right], \\
\tilde{\mathcal{C}}\left(N, \mathbf{x}_{T}\right)=Z_{\text {coll }}^{-1} \mathcal{C}\left(N, \mathbf{x}_{T}, \mu_{F}\right)
\end{gathered}
$$

Exact LL solution

In $\left(N, \mathbf{q}_{T}\right)$-space, subtracted \mathcal{C}, which resums all terms $\propto\left(\hat{\alpha}_{s} / N\right)^{n}$ has the form:

$$
\mathcal{C}\left(N, \mathbf{q}_{T}, \mu_{F}\right)=R\left(\gamma_{g g}\left(N, \alpha_{s}\right)\right) \frac{\gamma_{g g}\left(N, \alpha_{s}\right)}{\mathbf{q}_{T}^{2}}\left(\frac{\mathbf{q}_{T}^{2}}{\mu_{F}^{2}}\right)^{\gamma_{g g}\left(N, \alpha_{s}\right)}
$$

where $\gamma_{g g}\left(N, \alpha_{s}\right)$ is the solution of ${ }_{[J a r o s z e w i c z, ~}^{\left.82^{\prime}\right]}$:

$$
\frac{\hat{\alpha}_{s}}{N} \chi\left(\gamma_{g g}\left(N, \alpha_{s}\right)\right)=1, \text { with } \chi(\gamma)=2 \psi(1)-\psi(\gamma)-\psi(1-\gamma)
$$

where $\psi(\gamma)=d \ln \Gamma(\gamma) / d \gamma$ - Euler's ψ-function. The first few terms:

$$
\gamma_{g g}\left(N, \alpha_{s}\right)=\underbrace{\underbrace{\frac{\hat{\alpha}_{s}}{N}}_{\text {DLA }}+2 \zeta(3) \frac{\hat{\alpha}_{s}^{4}}{N^{4}}+2 \zeta(5) \frac{\hat{\alpha}_{s}^{6}}{N^{6}}+\ldots}_{\text {LLA }}
$$

The function $R(\gamma)$ is

$$
R\left(\gamma_{g g}\left(N, \alpha_{s}\right)\right)=1+O\left(\alpha_{s}^{3}\right)
$$

Doubly-logarithmic approximation

Taking the LO result for $\gamma_{g g}\left(N, \alpha_{s}\right) \rightarrow \gamma_{N}=\frac{\hat{\alpha}_{s}}{N}$ we obtain:

$$
\mathcal{C}_{\mathrm{DL}}\left(N, \mathbf{q}_{T}, \mu_{F}\right)=\frac{\gamma_{N}}{\mathbf{q}_{T}^{2}}\left(\frac{\mathbf{q}_{T}^{2}}{\mu_{F}^{2}}\right)^{\gamma_{N}}
$$

which resums $\left(\frac{\hat{\alpha}_{s}}{N} \ln \frac{\mathbf{q}_{T}^{2}}{\mu_{F}^{2}}\right)^{n} \leftrightarrow \hat{\alpha}_{s}^{n} \ln ^{n}\left(\frac{\mathbf{q}_{T}^{2}}{\mu_{F}^{2}}\right) \ln ^{n-1}\left(\frac{1}{z}\right)$.

In $\left(z, \mathbf{q}_{T}\right)$-space it is [Blümlein, $9^{\prime}{ }^{\prime}$]:

$$
\mathcal{C}_{\mathrm{DL}}\left(z, \mathbf{q}_{T}, \mu_{F}\right)=\frac{\hat{\alpha}_{s}}{\mathbf{q}_{T}^{2}} \begin{cases}J_{0}\left(2 \sqrt{\hat{\alpha}_{s} \ln \frac{\mu_{F}^{2}}{\mathbf{q}_{T}^{2}} \ln \frac{1}{z}}\right), & \left|\mathbf{q}_{T}\right|<\mu_{F} \\ I_{0}\left(2 \sqrt{\hat{\alpha}_{s} \ln \frac{\mathbf{q}_{T}^{2}}{\mu_{F}^{2}} \ln \frac{1}{z}}\right), & \left|\mathbf{q}_{T}\right|>\mu_{F}\end{cases}
$$

where J_{0} / I_{0} is the Bessel function of the first/second kind.
This approximation should be used with standard LO, NLO, NNLO PDFs, because DGLAP evolution is taken at fixed order (LO, NLO, NNLO).

Does this work?

The resummation has to reporduce the $A_{1}^{[m]}$ NLO coefficient when expanded up to NLO in α_{s}. And it does. We have performed expansion up to NNLO:

State	$A_{0}^{[m]}$	$A_{1}^{[m]}$	$A_{2}^{[m]}$	$B_{2}^{[m]}$
${ }^{1} S_{0}$	1	-1	$\frac{\pi^{2}}{6}$	$\frac{\pi^{2}}{6}$
${ }^{3} S_{1}$	0	1	0	$\frac{\pi^{2}}{6}$
${ }^{3} P_{0}$	1	$-\frac{43}{27}$	$\frac{\pi^{2}}{6}+\frac{2}{3}$	$\frac{\pi^{2}}{6}+\frac{40}{27}$
${ }^{3} P_{1}$	0	$\frac{5}{54}$	$-\frac{1}{9}$	$-\frac{2}{9}$
${ }^{3} P_{2}$	1	$-\frac{53}{36}$	$\frac{\pi^{2}}{6}+\frac{1}{2}$	$\frac{\pi^{2}}{6}+\frac{11}{9}$

for e.g.

$$
\begin{aligned}
& \hat{\sigma}_{g g}^{[m], ~ H E F ~}(z \rightarrow 0)=\sigma_{\mathrm{LO}}^{[m]}\left\{A_{0}^{[m]} \delta(1-z)+\frac{\alpha_{s}}{\pi} 2 C_{A}\left[A_{1}^{[m]}+A_{0}^{[m]} \ln \frac{M^{2}}{\mu_{F}^{2}}\right]\right. \\
& \left.+\left(\frac{\alpha_{s}}{\pi}\right)^{2} C_{A}^{2} \ln \frac{1}{z}\left[2 A_{2}^{[m]}+B_{2}^{[m]}+4 A_{1}^{[m]} \ln \frac{M^{2}}{\mu_{F}^{2}}+2 A_{0}^{[m]} \ln ^{2} \frac{M^{2}}{\mu_{F}^{2}}\right]+O\left(\alpha_{s}^{3}\right)\right\},
\end{aligned}
$$

Connection with $\hat{\mu}_{F}$

The HEF resummation would be equivalent to the $\hat{\mu}_{F}$ prescription, if the HEF CF $H^{[m]}\left(\mathbf{q}_{T 1}^{2}, \mathbf{q}_{T 2}^{2}=0\right) / M_{T}^{4}$ was $\propto \theta\left(\hat{\mu}_{F}^{2}-\mathbf{q}_{T 1}^{2}\right)$. But it is not:

$16 / 23$

Matching with NLO of CF

The HEF works only at $z \ll 1$, misses power corrections $O(z)$, while NLO CF is exact in z, but only NLO in α_{s}. We need to match them.

- Simplest prescription: just subtract the overlap at $z \ll 1$:

$$
\begin{aligned}
& \sigma_{\mathrm{NLO}+\mathrm{HEF}}^{[m]}=\sigma_{\mathrm{LO} \mathrm{CF}}^{[m]}+\int_{z_{\min }}^{1} \frac{d z}{z}\left[\check{\sigma}_{\mathrm{HEF}}^{[m], i j}(z)\right. \\
& \left.+\hat{\sigma}_{\mathrm{NLO} \mathrm{CF}}^{[m], i j}(z)-\hat{\sigma}_{\mathrm{NLO} \mathrm{CF}}^{[m], i j}(0)\right] \mathcal{L}_{i j}(z)
\end{aligned}
$$

- Or introduce smooth weights:

$$
\begin{aligned}
& \sigma_{\mathrm{NLO}+\mathrm{HEF}}^{[m]}=\sigma_{\mathrm{LO} \mathrm{CF}}^{[m]}+\int_{z_{\mathrm{min}}}^{1} d z\left\{\left[\check{\sigma}_{\mathrm{HEF}}^{[m], i j}(z) \frac{\mathcal{L}_{i j}(z)}{z}\right] w_{\mathrm{HEF}}^{i j}(z)\right. \\
& \left.+\left[\hat{\sigma}_{\mathrm{NLO} \mathrm{CF}}^{[m], i j}(z) \frac{\mathcal{L}_{i j}(z)}{z}\right]\left(1-w_{\mathrm{HEF}}^{i j}(z)\right)\right\}
\end{aligned}
$$

Inverse error weighting method

In the InEW method [Eichevarria, et.al,, 2018] the weights are calculated from estimates of the error of each contribution:

$$
w_{\mathrm{HEF}}^{i j}(z)=\frac{\left[\Delta \sigma_{\mathrm{HEF}}^{i j}(z)\right]^{-2}}{\left[\Delta \sigma_{\mathrm{HEF}}^{i j}(z)\right]^{-2}+\left[\Delta \sigma_{\mathrm{CF}}^{i j}(z)\right]^{-2}},
$$

- For $\Delta \sigma_{\mathrm{CF}}$ we take the $\alpha_{s}^{2} \ln \frac{1}{z}$ term obtained from HEF $+O\left(\alpha_{s}^{2}\right)$-term which we vary.
- For $\Delta \sigma_{\text {HEF }}$ we take the $\alpha_{s} O(z)$ part of the NLO CF result $+O\left(\alpha_{s}^{2}\right)$-term which we vary.

Matching plots

$19 / 23$

Matched results for η_{c}

NLO

NLO + HEF DLA

Matched results for η_{b}

NLO

NLO + HEF DLA

The PDF dependence

$22 / 23$

Conclusions and outlook

- The high-energy instability of the NLO cross section is related with lack of the $\alpha_{s}^{n} \ln ^{n-1} \frac{1}{z}$ corrections in $\hat{\sigma}(z)$ at $z \ll 1$.
- The HEF at DLA is the formalism to solve this problem if the standard fixed-order PDFs are to be used.
- Matching between NLO CF (finite z) and HEF $(z \ll 1)$ has to be performed, but there is no strong sensitivity to matching procedure.
- Scale-uncertainty is reduced, the K-factor is flat at high energy. But the uncertainty of NLO CF + DLA HEF calculation is still too large.
- NLO CF + NLL HEF calculation is in progress.
- Future plans: y-distributions, production of $\chi_{c J}$, photoproduction...

Thank you for your attention!

Backup: Higher-twist effects

Convolution of \mathcal{C}-factor with the Gaussian in \mathbf{k}_{T} :

The correction is $O\left(\sigma_{T}^{2} / M^{2}\right)$, so it is higher twist effect.

Backup: DGLAP $P_{g g}$ at small z

Plot from hep-ph/1607.02153 with my curve (in red) for LL $\gamma_{g g}(N)=\frac{\hat{\alpha}_{s}}{N}+2 \zeta(3) \frac{\hat{\alpha}_{s}^{4}}{N^{4}}+2 \zeta(5) \frac{\hat{\alpha}_{s}^{6}}{N^{6}}+\ldots$

$$
\alpha_{\mathrm{s}}=0.2, \mathrm{n}_{\mathrm{f}}=4, \mathrm{Q}_{0} \overline{\mathrm{MS}}
$$

The "LO +LL" and "NLO +NLL" curves represent a form of matching between DGLAP and BFKL expansions, in a scheme by Altarelli, Ball and Forte.

[^0]: ${ }^{1}$ Université Paris-Saclay, CNRS, IJCLab, Orsay, France
 ${ }^{2}$ Samara National Research University, Samara, Russia
 ${ }^{3}$ Institute for Theoretical Particle Physics, KIT, Karlsruhe, Germany

