Next-to soft virtual resummed Drell-Yan cross section beyond Leading-logarithm

Aparna Sankar

The Institute of Mathematical Sciences, India

Joint work with Ajjath A.H, Pooja Mukherjee, V. Ravindran and Surabhi Tiwari REF 2021, Virtual Meeting

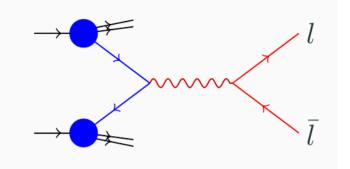
Outline

- Overview and Background
- Next-to soft virtual (NSV) formalism for inclusive cross sections
- NSV Resummation in Mellin space
- Phenomenology: Drell-Yan
- Summary and Outlook

Overview & Background

One of the standard candle processes

Large cross section and clean experimental signature important for detector calibration and constraining parton distribution functions



Duhr. Dulat et.al

('20)

- Experimentally, one has a very clean environment for precise measurements
- Well-understood theoretically known to N³LO accuracy in QCD
- DY serves as an important process in collider experiments
- Higher order perturbative QCD corrections to DY provides ample opportunity to explore the structure of the perturbation series

Overview & Background

- Large logarithms at kinematic threshold region spoil the reliability of fixed-order pertutrbative sries
 Sterman (187), Catani, Trentedue '89
- Resolution: Thresold resummation Sterman-Catani-Trentedue

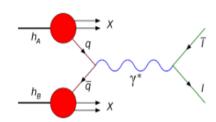
- Resummation is necessary to provide reliable theoretical predictions
- Threshold resummation : known to N³LL accuracy

Ajjath A H,^a Goutam Das,^{b,c} M. C. Kumar,^d Pooja Mukherjee,^a V. Ravindran,^a Kajal Samanta^d

Incusive Reactions – QCD Improved Parton Model

Drell-Yan (DY) / Higgs boson production in Hadron collisions

$$\sigma(q^2,\tau) = \sigma_0(\mu_R^2) \int \frac{dz}{z} \Phi_{ab}\left(\frac{\tau}{z},\mu_F^2\right) \Delta_{ab}(q^2,\mu_F^2,z)$$



au Hadronic scaling variable

 $q^2\,$ Invariant mass sq

z Partonic scaling variable

 μ_R^2 Renormalisation scale μ_F^2 Factorisation scale

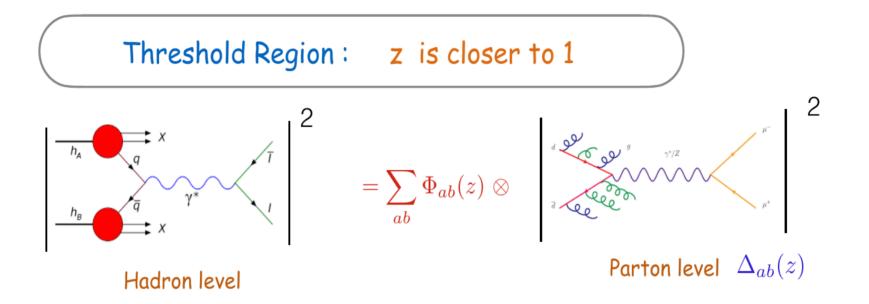
Partonic Coeff. function

Partonic flux

$$\Phi_{ab}(\mu_F^2, z) = \int \frac{dy}{y} f_a(y, \mu_F^2) f_b\left(\frac{z}{y}, \mu_F^2\right)$$

Parton distribution fns (PDFs)

Threshold Expansion



$$z = \frac{q^2}{\hat{s}} \to 1$$
 square of partonic c.m energy

Perturbatibe Structure

$$\Delta_{c}^{\text{SV+NSV},i}(z,q^{2}) = \sum_{k=0}^{2i-1} c_{ik}^{\mathcal{D}} \ \mathcal{D}_{k} + c_{i}^{\delta} \ \delta(1-z) + \sum_{k=0}^{2i-1} c_{ik}^{L} \ \log^{k}(1-z)$$

$$\mathcal{D}_{k} = \left(\frac{\log^{k}(1-z)}{(1-z)}\right)_{+}$$

$$\frac{\text{Soft-virtual corrections}}{\text{Most Singular when } z \rightarrow 1}$$

$$\frac{\text{Most Singular when } z \rightarrow 1}{\text{Corrections from diagonal}}$$

$$\frac{\text{Next-to SV corrections}}{\text{Collinear logarithms}}$$

$$\frac{\text{Collinear logarithms}}{\text{Corrections from both}}$$

Resummation to LL accuracy

Not much studied

weii-ungerstoog

NSV in History

The problem of NSV/NLP(next-to-leading power) logarithms has been of interest for a long time, and several different approaches have been proposed.

- * The earliest evidence that IR effects can be studied at NLP [Low, Burnett, Kroll]
- **Early attempts :** [Kraemer, Laenen, Spira (98)]
 [Akhoury, Sotiropoulos & Sterman (98)]
- Important Results & Predictions using Physical Kernel Approach & explicit computation:
 [Moch , Vogt et al. (09-20)]
 [Anastasiou, Duhr, Dulat et al.(14)]

NSV in History

* Universality of NLP effects and LL Resummation:

[Laenen, Magnea, et al. (08-19)] [Grunberg & Ravindran (09)] [Ball, Bonvini, Forte, Marzani, Ridolfi (13)] [Del Duca et al. (17)]

 Subleading Factorisation and LL Resummation at NLP using SCET: [Larkoski, Nelli, Stewart et al. (14)]
 [Kolodrubetz, Moult, Neill, Stewart et al. (17)]
 [Beneke et al. (19-20)]

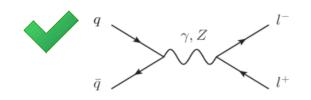
And many other works...

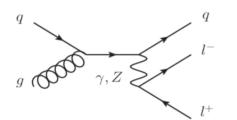
Our Works

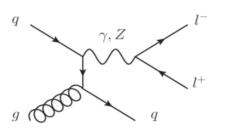
- ★ Factorisation and RG invariance approach to study NSV resummation effects [Ajjath, Pooja, Ravindran , hep-ph/ 2006.06726]
- On next to soft threshold corrections to DIS and SIA processes [Ajjath, Pooja, Ravindran, A.Sankar, S.Tiwari, JHEP 04 (2021) 131]
- Next-to SV resummed Drell-Yan cross section beyond Leading-logarithm
 [Ajjath, Pooja, Ravindran, A.Sankar, S.Tiwari, hep-ph/2107.09717]
- Resummed Higgs boson cross section at next-to SV to NNLO + NNLL [Ajjath, Pooja, Ravindran, A.Sankar, S.Tiwari, hep-ph/2109.12657]
- Rapidity distribution at soft-virtual and beyond for n-colorless particles to N4LO in QCD [Taushif, Ajjath, Pooja, Ravindran, A.Sankar, Eur. Phys. J. C 81, 943 (2021)]
- Next-to-soft corrections for Drell-Yan and Higgs boson rapidity distributions beyond N3LO
 [Ajjath, Pooja, Ravindran, A.Sankar, S.Tiwari, Phys.Rev.D 103 (2021) L111502]

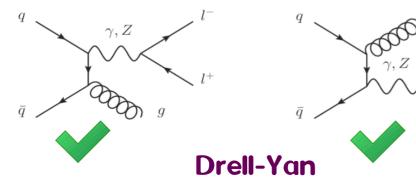
Our Approach

Considered only diagonal channels :









- * Collinear Factorisation
- Renormalisation Group
 (RG) Invariance
- Logarithmic structure of higher order perturbative results

The Theory - Formalism

Factoring out the pure virtual contributions Soft+Next-to soft corrections $\hat{\sigma}_{c\bar{c}}(z,\epsilon) = \left(Z_{c,UV}\right)^2 |\hat{F}_c(\epsilon)|^2 S_c(z,\epsilon)$ Partonic cross-section **Unrenormalised Form Factor (FF) UV** Renormalisation constant (pure virtual corrections) **Mass Factorisation** Altarelli-Parisi (AP) kernel $\frac{1}{z}\hat{\sigma}_{ab}(z,\epsilon) = \sigma_0 \sum_{a'b'} \Gamma_{aa'}(\mu_F^2, z, \epsilon) \otimes \left(\frac{1}{z}\Delta_{a'b'}(\mu_F^2, z, \epsilon)\right) \otimes \Gamma_{b'b}(\mu_F^2, z, \epsilon)$ **Collinear Singular** Partonic cross-section containing only **Collinear Finite** Initial state collinear singularities

Coefficient function – Diagonal channel

UV finite mass-factorised partonic coefficient function for the diagonal channels:

$$\Delta_{c\bar{c}}(z,\epsilon,q^2\mu_R^2,\mu_F^2) = \left(\Gamma^T\right)^{-1} \otimes \left\{ \left(Z_{c,UV}\right)^2 |\hat{F}_c(Q^2,\epsilon)|^2 S_c(q^2,z,\epsilon) \right\} \otimes \left(\Gamma\right)^{-1}$$

Now, let us study these each building block separately

Set of governing differential eqns

$$\Delta_{c\bar{c}}(z,\epsilon,q^2\mu_R^2,\mu_F^2) = \left(\Gamma^T\right)^{-1} \otimes \left\{ \left(Z_{c,UV}\right)^2 |\hat{F}_c(Q^2,\epsilon)|^2 S_c(q^2,z,\epsilon) \right\} \otimes \left(\Gamma\right)^{-1}$$

$$Q^{2} \frac{d}{dQ^{2}} \log \hat{F}^{c} = \frac{1}{2} \Big[K^{c} \Big(\hat{a}_{s}, \frac{\mu_{R}^{2}}{\mu^{2}}, \varepsilon \Big) + G^{c} \Big(\hat{a}_{s}, \frac{Q^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \varepsilon \Big) \Big]$$

$$\mu_{R}^{2} \frac{d}{d\mu_{R}^{2}} \log Z_{c,UV}(\hat{a}_{s}, \mu_{R}^{2}, \mu^{2}, \varepsilon) = \sum_{i=1}^{\infty} a_{s}^{i}(\mu_{R}^{2}) \gamma_{i-1}^{c}$$

$$\mu_{F}^{2} \frac{d}{d\mu_{F}^{2}} \Gamma_{ab}(z, \mu_{F}^{2}, \epsilon) = \frac{1}{2} \sum_{a'=q,\bar{q},g} P_{aa'}(z, a_{s}(\mu_{F}^{2})) \otimes \Gamma_{a'b}(z, \mu_{F}^{2}, \epsilon)$$

$$P_{ad}^{2} \frac{d}{d\mu_{F}^{2}} \Gamma_{ab}(z, \mu_{F}^{2}, \epsilon) = \frac{1}{2} \sum_{a'=q,\bar{q},g} P_{aa'}(z, a_{s}(\mu_{F}^{2})) \otimes \Gamma_{a'b}(z, \mu_{F}^{2}, \epsilon)$$

$$P_{ad}^{2} \frac{d}{d\mu_{F}^{2}} \Gamma_{ab}(z, \mu_{F}^{2}, \epsilon) = \frac{1}{2} \sum_{a'=q,\bar{q},g} P_{aa'}(z, a_{s}(\mu_{F}^{2})) \otimes \Gamma_{a'b}(z, \mu_{F}^{2}, \epsilon)$$

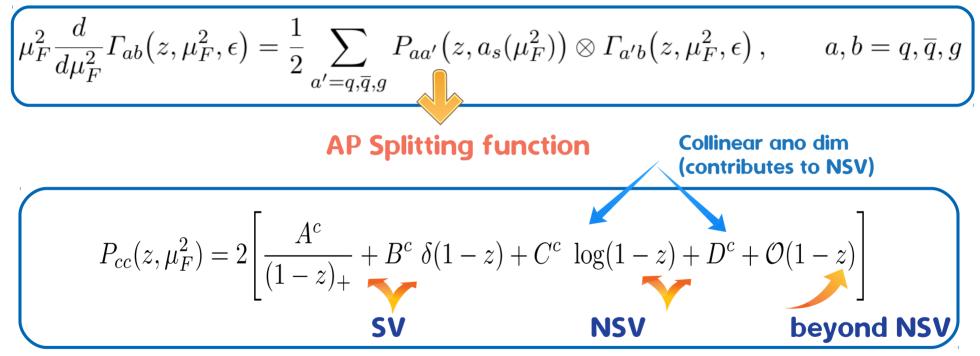
$$P_{ad}^{2} \frac{d}{d\mu_{F}^{2}} \Gamma_{ab}(z, \mu_{F}^{2}, \epsilon) = \frac{1}{2} \sum_{a'=q,\bar{q},g} P_{aa'}(z, a_{s}(\mu_{F}^{2})) \otimes \Gamma_{a'b}(z, \mu_{F}^{2}, \epsilon)$$

$$P_{ad}^{2} \frac{d}{d\mu_{F}^{2}} \Gamma_{ab}(z, \mu_{F}^{2}, \epsilon) = \frac{1}{2} \sum_{a'=q,\bar{q},g} P_{aa'}(z, a_{s}(\mu_{F}^{2})) \otimes \Gamma_{a'b}(z, \mu_{F}^{2}, \epsilon)$$

Altarelli-Parisi kernels

Required to remove the initial state collinear singularities

AP kernels which satisfy renormalisation group equations



[Moch.Vogt.Vermaseren]

We consider only diagonal parts of splitting functions

RGE - Summary

Building blocks

- $Z_{c,UV}$ Renormalisation const
 - \hat{F}_c Form Factor (FF)
 - Γ_c AP Kernels
 - S_c Soft + Next-to soft factor

Guiding factors

- Finiteness of the partonic coefficient function Δ_c
- Sudakov differential eqn of FFs (K+G eqn)
- RG Eqns of AP kernels and $Z_{c,UV}$

Differential Eqn – Soft + Next-to Soft

$$\begin{aligned} q^2 \frac{d}{dq^2} \mathcal{S}_c &= \frac{1}{2} \Big[\overline{K}_c \Big(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, \epsilon, z \Big) + \overline{G}_c \Big(\hat{a}_s, \frac{q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, \epsilon, z \Big) \Big] \otimes \mathcal{S}_c \\ \\ & \text{IR singular} & \text{IR finite} \end{aligned}$$

Soft-collinear contributions exhibits exponential behaviour

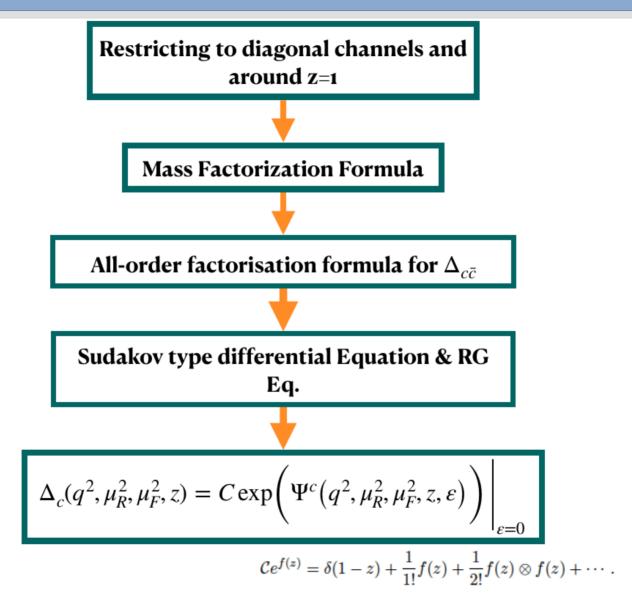
$$\mathcal{S}_c = \mathcal{C} \exp\left(2\Phi_c\right)$$

Soft- collinear function (will be discussed in detail)

$$\mathcal{C}\exp\left(2\Phi_c(z)\right) = \frac{\hat{\sigma}_{c\overline{c}}(z)}{Z_{c,UV}^2 |\hat{F}_c|^2}, \qquad c = q, b, g$$

No pure virtual , Only Real-Virtual (RV), Real-Real (RR) etc

SV+NSV CF in Nutshell



The Master Formula

$$\Psi_{c} = \left(\ln \left(Z_{c,UV}(\hat{a}_{s}, \mu^{2}, \mu_{R}^{2}, \epsilon) \right)^{2} + \ln \left| \hat{F}_{c}(\hat{a}_{s}, \mu^{2}, q^{2}, \epsilon) \right|^{2} \right) \delta(1 - z)$$

+2\Psi_{c}(\heta_{s}, \mu^{2}, q^{2}, z, \epsilon) - 2\mathcal{C} \ln \Gamma_{cc}(\heta_{s}, \mu^{2}, \mu_{F}^{2}, z, \epsilon) \right)

SV Ditributions
$$\delta(1-z), \left(\frac{\ln^k(1-z)}{(1-z)}\right)_+$$

NSV Logarithms $h^k(1-z)$

Soft-Collinear Function

[Ravindran]

$$\begin{split} q^2 \frac{d}{dq^2} \Phi_c &= \frac{1}{2} \Big[\overline{K}_c \Big(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, \epsilon, z \Big) + \overline{G}_c \Big(\hat{a}_s, \frac{q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, \epsilon, z \Big) \Big] \\ & \text{IR singular} & \text{IR finite, needs to be} \\ & \text{determined} \end{split}$$

RG invariance implies

$$\mu_R^2 \frac{d}{d\mu_R^2} \overline{K}_c = -\mu_R^2 \frac{d}{d\mu_R^2} \overline{G}_c = A_c \delta(1-z)$$

identical to the cusp anomalous dimension that appears in the FFs confirming the universality of IR structure

Soft-Collinear Function -- Solution

$$\Phi_{c}(\hat{a}_{s}, q^{2}, \mu^{2}, \epsilon, z) = \sum_{i} \hat{a}_{s}^{i} \left(\frac{q^{2}(1-z)^{2}}{\mu^{2}z}\right)^{i\frac{\epsilon}{2}} S_{\epsilon}^{i} \left(\frac{i\epsilon}{1-z}\right) \left[\hat{\phi}_{c}^{A,(i)}(\epsilon) + (1-z) \ \hat{\phi}_{c}^{B,(i)}(z,\epsilon)\right]$$
Phase-space factor
From matrix elements

Expanding the ansatz:

Solution verified up to 3rd order

$$\frac{1}{(1-z)} \left[(1-z)^2 \right]^{i\frac{\epsilon}{2}} = \frac{\delta(1-z)}{i\epsilon} + \sum_{k=0}^{\infty} \left[i\epsilon \right]^k \frac{\mathcal{D}_k}{k!} \longrightarrow \text{Contributes to SV}$$

$$z^{-i\frac{\epsilon}{2}} = \sum_{n=0}^{\infty} \frac{\left[\frac{-i\epsilon}{2}\log(z)\right]^n}{n!}$$

Combining with SV, contributes to NSV

Contributes to pure NSV

 $\left[(1-z)^2\right]^{i\frac{\epsilon}{2}} = \sum_{n=0}^{\infty} \frac{\left[i\epsilon \log(1-z)\right]^n}{n!}$

All order structure – Predictive power

All order exponentiation can predict to all orders from lower orders:

 $\Delta_c(z) = \mathcal{C} \exp \left(\Psi^c \left(q^2, \mu_R^2, \mu_F^2, z, \varepsilon \right) \right) \Big|_{\varepsilon = 0}$ $=\sum_{i=0}^{n} a_s^i \ \Delta_c^{(i)}(z)$

$$\mathcal{D}_k = \left(\frac{\log^k(1-z)}{1-z}\right)_+$$

$$L_z = \log(1-z)$$

GIVEN				PREDICTIONS		
$arPsi_c^{(1)}$	$\Psi_c^{(2)}$	$arPsi_c^{(3)}$	$\varPsi_c^{(n)}$	$\Delta_c^{(2)}$	$arDelta_c^{(3)}$	$\Delta_c^{(i)}$
$\mathcal{D}_0, \mathcal{D}_1, \delta$				$\mathcal{D}_3, \mathcal{D}_2$	$\mathcal{D}_5,\mathcal{D}_4$	$\mathcal{D}_{(2i-1)}, \mathcal{D}_{(2i-2)}$ $L_{z}^{(2i-1)}$
L_z^1, L_z^0				L_z^3	L_z^5	$L_z^{(2i-1)}$
	$\mathcal{D}_0,\mathcal{D}_1,\delta$				$\mathcal{D}_3,\mathcal{D}_2$	$\mathcal{D}_{(2i-3)}, \mathcal{D}_{(2i-4)}$ $L_z^{(2i-2)}$
	L^2_z, L^1_z, L^0_z				L_z^4	$L_z^{(2i-2)}$
		$\mathcal{D}_0, \mathcal{D}_1, \delta$				$\mathcal{D}_{(2i-5)}, \mathcal{D}_{(2i-6)}$ $L_z^{(2i-3)}$
		$\mathcal{D}_0, \mathcal{D}_1, \delta$ L_z^3, \cdots, L_z^0				$L_z^{(2i-3)}$
			$\mathcal{D}_0, \mathcal{D}_1, \delta$			$\frac{\mathcal{D}_{(2i-(2n-1))}, \mathcal{D}_{(2i-2n)}}{L_z^{(2i-n)}}$
			$\mathcal{D}_0, \mathcal{D}_1, \delta$ L_z^n, \cdots, L_z^0			$L_z^{(2i-n)}$

using nth order info at every order in asⁱ for all i

Our predictions agree with the those obtained by explicit computation

[Ajjath, Pooja, Ravindran]

Integral representation in z-space

Knowing the functional form of each building blocks one can derive the integral form as:

Integral representation:

captures the delta contribution from FF and S_c

$$\Delta_c(q^2, z) = C_0^c(q^2) \quad \mathcal{C} \exp\left(2\Psi_{\mathcal{D}}^c(q^2, z)\right)$$

Exponent:

$$\Psi_{\mathcal{D}}^{c}(q^{2},z) = \frac{1}{2} \int_{\mu_{F}^{2}}^{q^{2}(1-z)^{2}} \frac{d\lambda^{2}}{\lambda^{2}} P_{cc}'(a_{s}(\lambda^{2}),z) + \mathcal{Q}^{c}(a_{s}(q^{2}(1-z)^{2}),z)$$

Finite contributions from cancellation between Γ_{cc} & 2

$$P_{cc}' = 2 \Big[A^c \mathcal{D}_0(z) + C^c \ln(1-z) + D^c \Big] \\ \mathcal{Q}^c(a_s(q^2(1-z)^2), z) = \Big(\frac{1}{1-z} \overline{G}_{SV}^c(a_s(q^2(1-z)^2)) \Big)_+ + \varphi_{f,c}(a_s(q^2(1-z)^2), z).$$

Finite contribution coming from S

In the Mellin N space

Mellin moment of CFs

$$\Delta_N^c = \int_0^1 dz \ z^{N-1} \Delta_c(z)$$

Threshold limit $z \to 1$ in z-Space translates to $N \to \infty$ in N-Space

 $N \rightarrow \infty$ \qquad Taking into account SV and NSV terms

$$\left(\frac{\log(1-z)}{1-z}\right)_{+} = \frac{\log^2 N}{N} - \frac{\log N}{2N} + \mathcal{O}\left(\frac{1}{N^2}\right)$$
$$\log^k(1-z) = \frac{\log^k N}{N} + \mathcal{O}\left(\frac{1}{N^2}\right)$$

Tower of NSV logarithms – Can we resum ?

Structure of Next to SV terms

$$\Delta_N^c = 1 + a_s \left[c_1^2 \log^2 N + c_1^1 \log N + c_1^0 + d_1^1 \frac{\log N}{N} + \mathcal{O}(1/N) \right] + a_s^2 \left[c_2^4 \log^4 N + \dots + c_2^0 + d_2^3 \frac{\log^3 N}{N} + \dots + \mathcal{O}(1/N) \right] + \dots + a_s^n \left[c_n^{2n} \log^{2n} N + \dots + d_n^{2n-1} \frac{\log^{2n-1} N}{N} + \dots + \mathcal{O}(1/N) \right]$$

 $a_s \log N$ is of order `one` when a_s is very small at every order 1/N

Resummed Coefficient function

Inclusion of the NSV logarithms modifies the existing resumed expression as : $\omega = 2\beta_0 a_s(\mu_R^2)\log N$

$$\Delta_{c,N}(q^2,\mu_R^2,\mu_F^2) = C_0^c(q^2,\mu_R^2,\mu_F^2) \exp\left(\Psi_N^c(q^2,\mu_F^2)\right)$$

$$\Psi_{\rm SV,N}^{c} = \log(g_{0}^{c}(a_{s}(\mu_{R}^{2}))) + g_{1}^{c}(\omega)\log N + \sum_{i=0}^{\infty} a_{s}^{i}(\mu_{R}^{2})g_{i+2}^{c}(\omega)$$
[Step 198]

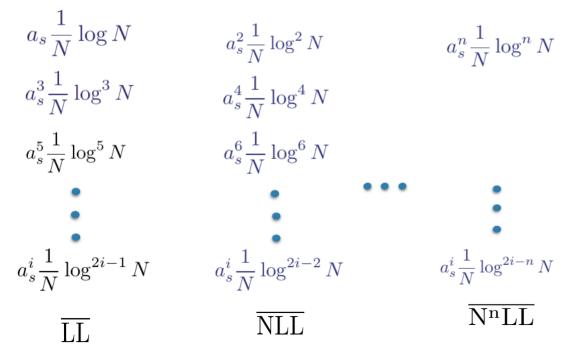
$$\begin{split} \Psi_{\text{NSV},N}^c &= \frac{1}{N} \sum_{i=0}^{\infty} a_s^i (\mu_R^2) \bigg(\bar{g}_{i+1}^c(\omega) + h_i^c(\omega, N) \bigg) \\ h_i^c(\omega, N) &= \sum_{k=0}^i h_{ik}^c(\omega) \ \log^k N. \end{split}$$

Known since 1989 [Sterman et.al] [Catani et.al]

New Result‼

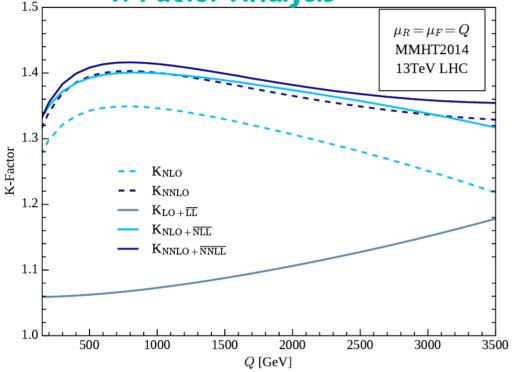
Predictive power – N Space

Logarithmic Accuracy	Resummed Exponents	i 1 , $2i-1$,
$\overline{\mathrm{LL}}$	$ ilde{g}^q_{0,0}, g^q_1, \overline{g}^q_1, h^q_0$	 $a_s^i \frac{1}{N} \log^{2i-1} N$
NLL	$ ilde{g}^q_{0,1}, g^q_2, \overline{g}^q_2, h^q_1$	 $a_s^i \frac{1}{N} \log^{2i-2} N$
NNLL	$ ilde{g}^q_{0,2}, g^q_3, \overline{g}^q_3, h^q_2$	 i 1 , $2i-n$ M
		$a_s^i \frac{1}{N} \log^{2i-n} N$



Tower of NSV logarithms

K-Factor Analysis



resummed curves lie above their corresponding fixed order ones - enhancement due to the resummed corrections

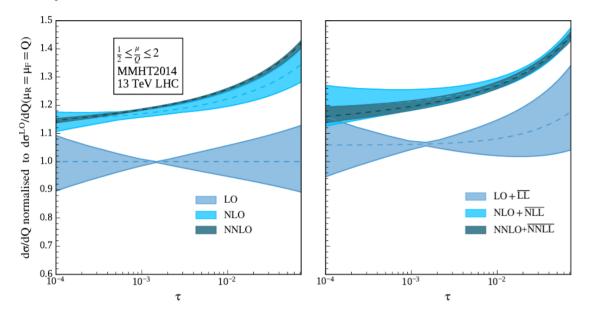
resummed curves are closer - resummed effect improves the reliability of perturbative Predictions

resummed correction decreases as we go for higher order resummed contributions

$\mu_R = \mu_F = Q(\text{GeV})$	$LO + \overline{LL}$	NLO	$NLO + \overline{NLL}$	NNLO	$NNLO + \overline{NNLL}$
500	1.0624	1.3425	1.3925	1.3950	1.4082
1000	1.0728	1.3464	1.3995	1.4004	1.4138
2000	1.1062	1.3064	1.3739	1.3652	1.3818

$$\mathbf{K}(Q) = \frac{\frac{d\sigma}{dQ}(\mu_R = \mu_F = Q)}{\frac{d\sigma^{\mathrm{LO}}}{dQ}(\mu_R = \mu_F = Q)}$$

7-point scale uncertainities of the resummed results



Q	LO	$LO + \overline{LL}$	NLO	$NLO + \overline{NLL}$	NNLO	$NNLO + \overline{NNLL}$
1000	$2.3476^{+4.10\%}_{-3.92\%}$	$2.5184^{+4.49\%}_{-4.25\%}$	$3.1609^{+1.79\%}_{-1.69\%}$	$3.2857^{+2.08\%}_{-1.18\%}$	$3.2876^{+0.20\%}_{-0.31\%}$	$3.3191^{+1.13\%}_{-0.86\%}$
2000	$0.0501^{+8.50\%}_{-7.46\%}$	$0.0554^{+9.10\%}_{-7.91\%}$	$0.0654^{+2.83\%}_{-2.98\%}$	$0.0688^{+1.43\%}_{-1.23\%}$	$0.0684^{+0.37\%}_{-0.62\%}$	$0.0692^{+0.89\%}_{-0.78\%}$

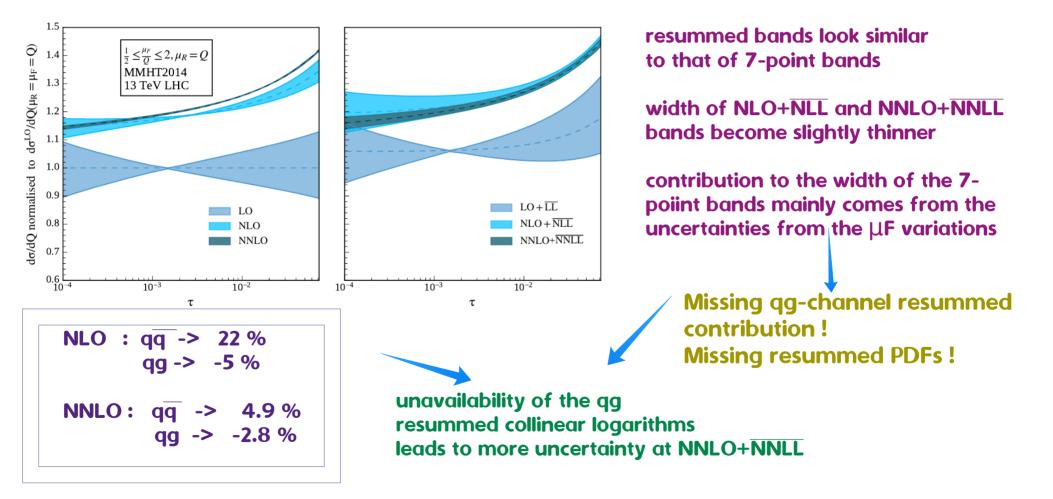
resummed result shows a systematic reduction of the uncertainties with the inclusion of each logarithmic corrections

improvement at the NLO+NLL than at the NNLO+NNLL Why ?

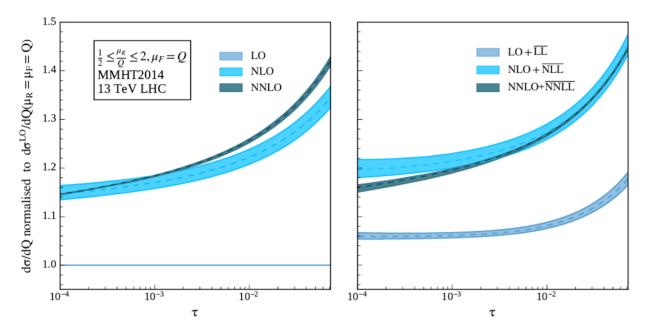
Let us analyze the effect of each scale individually on the resummed result

 μ = { μ F , μ R} is varied in the range [1/2Q, 2Q] keeping the ratio μ R / μ F not larger than 2 and smaller than 1/2.

Uncertainities w.r.t $\mu_{\rm F}$ scale variation



Uncertainities w.r.t $\mu_{\scriptscriptstyle R}$ scale variation



NNLO+NNLL the error band becomes substantially thinner

each partonic channel is invariant under μ_{R} variation and hence inclusion of more corrections within a channel is expected to reduce the uncertainity

Inclusion of resummed result reduces the $\mu_{\rm R}$ uncertainly remarkably as compared to the fixed order ones

Summary & Outlook

Using collinear factorisation and RG invariance and exploiting fixed order results, we propose an all order formula.

We propose an integral representation which can resume both SV and NSV logarithms to all orders.

Hence we have extended the Resummation of the NSV logarithms till NNLL accuracy.

We find the SV + NSV resummed results give significant contributions owing to the large coefficients of the NSV terms.

Summary & Outlook

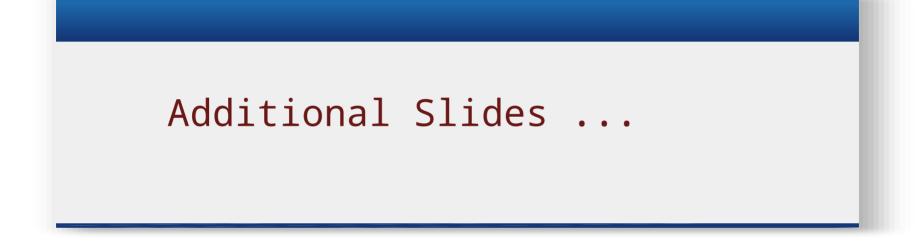
The inclusion of resummed NSV terms improves perturbative convergence and reduces the uncertainty from the choice of renormalisation scale.

The absence of quark gluon initiated contributions to NSV part in the resummed terms leaves large factorisation scale dependence indicating their importance at NSV level for DY.

Summary & Outlook

What more to do?

Modify the existing formalism for off-Diagonal Channels.



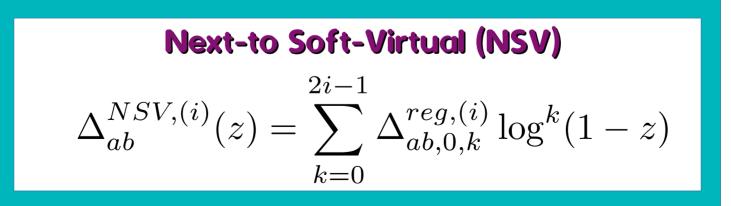
$$\mathcal{D}_{k} = \begin{pmatrix} \log^{k}(1-z) \\ \frac{\log^{k}(1-z)}{(1-z)} \end{pmatrix}_{+}$$

$$\Delta_{ab}^{SV,(i)}(z) = \delta_{a\bar{a}} \left(\Delta_{\bar{a}b,\delta} \ \delta(1-z) + \sum_{k=0}^{2i-1} \Delta_{\bar{a}b,\mathcal{D}_{k}}^{(i)} \mathcal{D}_{k}(z) \right)$$

$$\mathcal{D}_{k} = \left(\frac{\log^{k}(1-z)}{(1-z)} \right)_{+}$$
Plus distribution

Regular part

$$\Delta_{ab}^{reg,(i)}(z) = \sum_{k=0}^{2i-1} \sum_{l=0}^{\infty} \Delta_{ab,l,k}^{reg,(i)} (1-z)^l \log^k (1-z)$$



Form Factor – K+G Eqn

IR singularities factorise

[Sen,sterman,Magnea]

[Moch,Vogt,Vermasern;

Ravindran]

$$\hat{F}^{c}(Q^{2},\mu^{2},\epsilon) = Z_{IR}(Q^{2},\mu^{2},\mu^{2},\epsilon)\hat{F}_{c}^{fin}(Q^{2},\mu^{2},\mu^{2},\epsilon)$$

universal IR counter term **Fi** contains poles

Finite part

Differentiating both sides with respect to Q², we obtain K+G equation for the FFs $Q^{2} \frac{d}{dQ^{2}} \log \hat{F}^{c} = \frac{1}{2} \Big[K^{c} \Big(\hat{a}_{s}, \frac{\mu_{R}^{2}}{\mu^{2}}, \varepsilon \Big) + G^{c} \Big(\hat{a}_{s}, \frac{Q^{2}}{\mu_{R}^{2}}, \frac{\mu_{R}^{2}}{\mu^{2}}, \varepsilon \Big) \Big]$ Poles No Poles

RG Invariance

$$\begin{split} \mu_R^2 \frac{d}{d\mu_R^2} K^c(a_s(\mu_R^2) = -\mu_R^2 \frac{d}{d\mu_R^2} G^c(a_s(\mu_R^2)) = -\overline{A}^c(a_s(\mu_R^2)) \\ A_q = \frac{C_F}{C_A} A_g \end{split} \label{eq:alpha} \begin{array}{l} \text{Maximally non-abelian,} \\ \text{verified up to 4 loops} \end{array}$$

Factorisation – Diagonal channel

For Drell-Yan process:

Diagonal Channel:

$$\frac{\hat{\sigma}_{q\bar{q}}}{z\sigma_0} = \Gamma_{qq}^T \otimes \frac{\Delta_{qq}}{z} \otimes \Gamma_{q\bar{q}} + \Gamma_{qq}^T \otimes \frac{\Delta_{qg}}{z} \otimes \Gamma_{g\bar{q}} + \cdots$$

In the threshold limit $z \rightarrow 1$, keeping only

$$\begin{split} \left(\frac{\ln(1-z_i)}{(1-z_i)} \right)_+ & \delta(1-z_i) & \text{SV} \\ \log^k(1-z_i), & k=0,\cdots\infty & \text{next to SV} \end{split}$$

dropping $(1-z_i)^k$, $k=1,\cdots\infty$

$$\frac{\hat{\sigma}_{q\bar{q}}^{\rm sv+nsv}}{z\sigma_0} = \Gamma_{qq}^T \otimes \Delta_{q\bar{q}}^{\rm sv+nsv} \otimes \Gamma_{\bar{q}\bar{q}} \,.$$

Remarkably Simple form !

Factorisation – off-diagonal channel

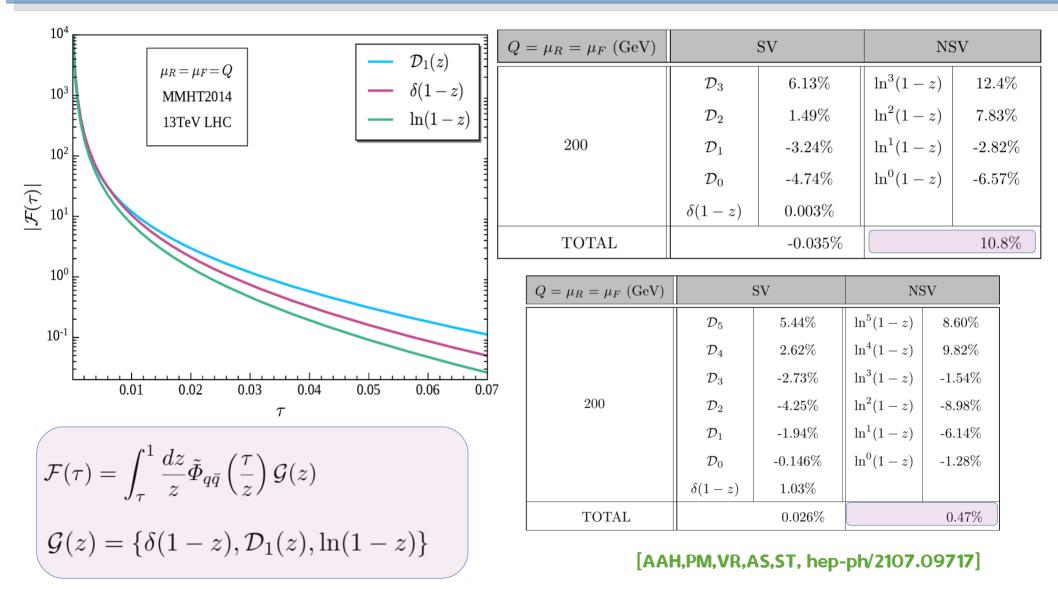
Off-diagonal Channel:

$$\frac{\hat{\sigma}_{qg}}{z\sigma_0} = \Gamma_{qq}^T \otimes \Delta_{qq} \otimes \Gamma_{qg} + \Gamma_{qq}^T \otimes \Delta_{qg} \otimes \Gamma_{gg} + \cdots$$

In the threshold limit z -> 1 , keeping only $\log^k(1-z_i), \quad k=0,\cdots\infty$ next to SV

Getting complicated due to Mixing of channels

NSV contributions



The Matched Result

Now we perform Mellin Inversion of the resummed result to study the numerical impact.

$$\sigma_N^{\mathrm{N^nLO}+\overline{\mathrm{N^nLL}}} = \sigma_N^{\mathrm{N^nLO}} + \sigma^{(0)} \sum_{ab \in \{q,\bar{q}\}} \int_{c-i\infty}^{c+i\infty} \frac{dN}{2\pi i} (\tau)^{-N} \delta_{a\bar{b}} f_{a,N}(\mu_F^2) f_{b,N}(\mu_F^2) \times \left(\left. \Delta_{q,N} \right|_{\overline{\mathrm{N^nLL}}} - \Delta_{q,N} \right|_{tr \ \mathrm{N^nLO}} \right).$$

The resummed results are matched to the fixed order result in order to avoid any double counting of threshold logarithms

The contour c in the Mellin inversion is chosen according to Minimal prescription

Used for phenomenological studies