Role of parton fragmentation for associated J / ψ production at high energies

S.P. Baranov, A.V. Lipatov, A.A. Prokhorov
based on Phys.Rev.D 104 (2021) 3, 034018

Resummation, Evolution, Factorization Workshop 2021
19 November 2021

Outline

- Introduction
- Motivation and goals
- New contributions to the $J / \psi+Z / W$
- Fragmentation to the charmonium
- Modelling events
- Comparison with experimental data and summary

Introduction

- Non-relativistic QCD (NRQCD):

$$
\sigma(p p \rightarrow J / \psi+X)=\sum_{n} \widehat{\sigma}\left(p p \rightarrow c \bar{c}\left({ }^{2 S+1} L_{J}^{[a]}\right)+X\right)\left\langle\mathcal{O}^{J / \psi}[n]\right\rangle
$$

- $\widehat{\sigma}\left(p p \rightarrow c \bar{c}\left({ }^{2 S+1} L_{J}^{[n]}\right)+X\right)$ is the cross section of production unbound $c \bar{c}$ pair at the Fock state $n={ }^{2 S+1} L_{J}^{(a)}$ with definite spin S, orbital angular momentum L , total angular momentum J and color representation a (color singlet (CS) [1] and color octet (CO) [8]) - can be calculated in the framework of pQCD
- LDME (long distance matrix element) $\left\langle\mathcal{O}^{J / \psi}[n]\right\rangle$ corresponds to transition from unbound state to the physical J / ψ meson - nonperturbative part.
- Progress in NRQCD evaluation of prompt $J / \psi+Z / W^{ \pm}$production: complete NLO calculations [Phys. Rev. D66, 114002 (2002)], [Phys. Rev. D83, 014001 (2011)], [JHEP02, 071 (2011)]; differential cross sections at the LO are significantly enhanced by the NLO corrections.

Introduction

Complete NLO NRQCD predictions with the double parton scattering (DPS) underestimate the latest ATLAS [Eur.Phys.J.C. 75, 229 (2015)] and ATLAS [J.High.Energ.Phys. 2020,95 (2020)] data by the factor 2-10 (depending on the J / ψ transverse momentum).

Motivation and goals

- We consider the new contributions to the prompt $J / \psi+Z / W^{ \pm}$production: flavor excitation subprocesses (charm for Z boson and strange for W) followed by the subsequent charm fragmentation, $c \rightarrow J / \psi+c$. Our goal is to estimate such contributions
- Recently we found that contribution of multiple gluon radiation to the cross section of double J / ψ production are very important [Eur. Phys. J. C80,1046 (2020)]. The multiple gluon radiation can be taken into account using the CCFM evolution equation. One can expect a sizeable contribution from multiple gluon radiation for $J / \psi+Z / W^{ \pm}$processes.
- Our goal is to investigate a role of multiple gluon fragmentation to the prompt $J / \psi+Z / W^{ \pm}$production

k_{T}-factorization approach

- We use the k_{T}-factorization approach with CCFM-evolved (Catani, Ciafaloni, Fiorani, Marchesini) Transverse Momentum Dependent (TMD) gluon densities
- Cross section in k_{T}-factorization approach:

$$
\begin{aligned}
d \sigma(p p \rightarrow J / \psi+Z / W)= & \int d x_{1} d x_{2} \sum_{i, j} d^{2} \vec{k}_{\perp 1} d^{2} \vec{k}_{\perp 2} f_{i}\left(x_{1}, \vec{k}_{\perp 1}^{2} \mu^{2}\right) f_{j}\left(x_{2}, \vec{k}_{\perp 2}^{2} \mu^{2}\right) \\
& \cdot d \widehat{\sigma}\left(i^{*}+j^{*} \rightarrow J / \psi+Z / W\right)
\end{aligned}
$$

- $f_{i, j}\left(x_{1,2}, \vec{k}_{\perp 1,2}, \mu^{2}\right)$ - TMD parton distribution functions (TMD PDF) in a proton obeying the BFKL or CCFM evolution equation
- $d \widehat{\sigma}\left(i^{*}+j^{*} \rightarrow J / \psi+Z / W\right)$ - off-shell partonic cross section

Flavor excitation

- Examples of Feynman diagram taken into account in the NRQCD calculations (left panel) and diagram of charm excitation followed by the c-quark fragmentation to J / ψ (right panel)
- Since the charm quark contribution can be obtained via gluon splitting ($g \rightarrow q_{s} \overline{q_{s}}$) for CCFM evolved gluon densities, the processes of flavor excitation: $g+c \rightarrow Z+c, g+s \rightarrow W^{-}+c$ turn to gluon-gluon fusion $g+g \rightarrow Z+c+\bar{c}$, $g+g \rightarrow W^{-}+c+\bar{s}$
- Gluon-gluon fusion followed by the fragmentation $c \rightarrow J / \psi+c$

Fragmentation to the charmonium \mathcal{H}

- We consider not only the direct production of J / ψ but also the feeddown contribution from radiative decay of $\psi^{\prime} \rightarrow J / \psi X$ and $\chi_{c J} \rightarrow J / \psi \gamma$
- Fragmentation function in NRQCD formalism at the starting scale $\mu_{0}^{2}=m_{\mathcal{H}}^{2}$:

$$
D_{a}^{\mathcal{H}}\left(z, \mu_{0}^{2}\right)=\sum_{n} d_{a}^{n}\left(z, \mu_{0}^{2}\right)\left\langle\mathcal{O}^{\mathcal{H}}[n]\right\rangle
$$

- Typical diagrams of gluons and charm quarks fragmentation into charmonium

$$
\alpha_{s}
$$

α_{s}^{3}

Multiple gluon radiation

- Additional contribution comes from multiple initial gluon radiation that accompanies the Z / W production
- Initial gluon cascade can be described by the CCFM evolution equation
- Subprocesses $g+g \rightarrow Z+q+\bar{q}$, $g+g \rightarrow W+q+\bar{q}^{\prime}$ give additional contribution via fragmentation $g \rightarrow c c\left({ }^{3} S_{1}^{[8]}\right) \rightarrow J / \psi$
- Circles on the plot denote the possible channels of partons fragmentation into J / ψ mesons

List of considered subprocesses

- Gluon-gluon fusion (a)-(b) are calculated in k_{T}-factorization approach QCD. The initial multiple gluon radiation can be taken into account using the CCFM evolved gluon densities
- Quark-involved subprocesses (c)-(h) are calculated in collinear QCD. The initial multiple gluon radiation are reconstructed with PYTHIA routine. Subprocesses
(c)-(d) involve only valence quarks (sea quark effectively included in gluon-gluon fusion)

J / ψ production via fragmentation

- We took only LO contributions to the FFs: $D_{g}^{\mathcal{H}}\left({ }^{3} S_{1}^{[8]}\right)$ and $D_{c}^{\mathcal{H}}\left({ }^{3} S_{1}^{[1]}\right)$ for $J / \psi, \psi^{\prime} ; D_{g}^{\mathcal{H}}\left({ }^{3} S_{1}^{[8]}\right)$ and $D_{c}^{\mathcal{H}}\left({ }^{3} P_{J}^{[1]}\right)$ for $\chi_{c J}$. Charm fragmentation into octet color states supressed due to color factor.
- LO DGLAP evolution equation $\Rightarrow \mathrm{FFs} D_{c}^{\mathcal{H}}\left(z, \mu^{2}\right)$ and $D_{g}^{\mathcal{H}}\left(z, \mu^{2}\right)$ at the any scale μ^{2}

$$
\frac{d}{d \log \mu^{2}}\binom{D_{c}}{D_{g}}=\frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi}\left(\begin{array}{cc}
P_{c c} & P_{g c} \\
P_{c g} & P_{g g}
\end{array}\right) \otimes\binom{D_{c}}{D_{g}}
$$

where $P_{a b}$ standard LO DGLAP splitting function

- Cross section of $J / \psi+Z / W$ production via charm fragmentation can be written:

$$
\frac{d \sigma(p p \rightarrow J / \psi+Z / W)}{d p_{T}}=\int d z \frac{d \widehat{\sigma}(p p \rightarrow c+Z / W)}{d p_{T}^{c}} D_{c}^{J / \psi}\left(z, \mu^{2}\right) \delta\left(z-\frac{p}{p^{c}}\right)
$$

Modelling events

We used:

- JH'2013 set1 and set2 TMD gluon densities for numerical calculations of gluon-gluon fusion subprocesses in k_{T}-factorization approach; Monte Carlo event generator CASCADE for reconstruction of CCFM initial gluon emissions
- MMHT2014LO PDF for numerical calculation of quark-involved subprocesses in collinear QCD; PYTHIA routine for initial gluon emissions
- numerical solution of DGLAP evolution of FFs with appropriate LDME's $\left\langle\mathcal{O}^{\mathcal{H}}[n]\right\rangle$ (list of used LDME: $\left\langle\mathcal{O}^{J / \psi}\left[{ }^{3} S_{1}^{(1)}\right]\right\rangle=1.16 \mathrm{GeV}^{3},\left\langle\mathcal{O}^{\psi^{\prime}}\left[{ }^{3} S_{1}^{(1)}\right]\right\rangle=0.7038$
 $\left.\left\langle\mathcal{O}^{J / \psi, \psi^{\prime}}\left[{ }^{3} S_{1}^{(8)}\right]\right\rangle=0.0012 \mathrm{GeV}^{3},\left\langle\mathcal{O}^{\chi_{c o}}\left[{ }^{3} S_{1}^{(8)}\right]\right\rangle=0.0004 \mathrm{GeV}^{3}\right)$

Selection criteria:

- $J / \psi+Z: p_{T}(J / \psi)>8.5 \mathrm{GeV},|y(J / \psi)|<2.1, M(Z)=81 \div 101 \mathrm{GeV}$ lead l : $p_{T}>25 \mathrm{GeV},|\eta|<2.5$; sublead l : $p_{T}>15 \mathrm{GeV},|\eta|<2.5$
- $J / \psi+W: p_{T}(J / \psi)>8.5 \mathrm{GeV},|y(J / \psi)|<2.1$,
$m_{T}\left(W^{ \pm}\right)=\sqrt{2 p_{T}^{l} p_{T}^{\nu}\left[1-\cos \left(\phi^{l}-\phi^{\nu}\right)\right]}>40 \mathrm{GeV}$
muon l : $p_{T}>25 \mathrm{GeV},|\eta|<2.4$; neutrino $\nu: p_{T}>20 \mathrm{GeV},|\eta|<2.4$

Comparison with ATLAS data

- Contribution from considered subprocesses with their subsequent parton fragmentation into J / ψ mesons (fragmnetation contribution) are remarkably important, especially at large transverse momenta (at $p_{T}^{J / \psi} \geq 20-30 \mathrm{GeV}$ it gives approximately the same contribution as NLO NRQCD + DPS)
- Feeddown contribution from radiative decay of $\psi^{\prime}, \chi_{c J}$ also play the significant role (about 30% of the estimated direct contribution at the wide $p_{T}^{J / \psi}$ range).
- Shaded bands represents the scale uncertainties.

Role of the multiple gluon radiation

- We consider the two qualitatively different sources of parton fragmentation into the J / ψ meson: fragmentation of charm quarks, originated in the hard interaction, and fragmentation of gluons, originated as a result of initial QCD evolution of parton densities
- In both cases of gluon-gluon fusion and quark-involved subprocesses the fragmentation of multiple gluon emission noticeably enhances the charm fragmentation and provides a sensible growth of the total and differential cross sections (especially at the region of high $p_{T}^{J / \psi}$)

Summary

- We investigated the role of new partonic subprocesses which yet have never been considered in the literature, namely, flavor (charm or strangeness) excitation subprocesses followed by the charm fragmentation $c \rightarrow J / \psi+c$.
- We take into account the effects of the multiple quark and gluon radiation in the initial and final states.
- Contributions from multiple gluon emissions noticeably enhance the charm fragmentation (especially at the region of high $p_{T}^{J / \psi}$).
- Accounting for the feeddown contribution from radiative decay of $\psi^{\prime}, \chi_{c J}$ also play a significant role (about 30% of the estimated direct contribution at the wide $p_{T}^{J / \psi}$ range).
- Considered new contributions are remarkably important and significantly reduce the gap between the theoretical predictions and experimental results for the $J / \psi+Z / W^{ \pm}$

Backup

Evolution of FFs

$$
\begin{gathered}
D_{\text {init } g}^{J / \psi}\left(z, \mu_{0}^{2}\right)=\frac{a_{s}\left(\mu_{0}^{2}\right) \pi}{8 m_{J / \psi}^{3}} \delta(1-z) \\
D_{\text {init } c}^{J / \psi}\left(z, \mu_{0}^{2}\right)=\frac{a_{s}^{2}\left(\mu_{0}^{2}\right)}{m_{J / \psi}^{3}} \frac{16 z(1-z)^{2}}{243(2-z)^{6}}\left(5 z^{4}-32 z^{3}+72 z^{2}-32 z+16\right)
\end{gathered}
$$

[Bernd. A.Kniehl, Gustav Kramer Phys.Rev.D. 56, 5820, (1997)]

