Double parton distributions in colour space.

Perturbative splitting and positivity bounds.

[arXiv:2105.08425, arXiv:2109.14304]

November 15, 2021

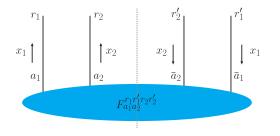
M. Diehl ¹ J. R. Gaunt ² P. Plößl ¹

¹Deutsches Elektronen-Synchrotron DESY ²Department of Physics and Astronomy, University of Manchester

[arXiv:2105.08425] [arXiv:2109.14304]

Coupling of colour indices for DPDs.

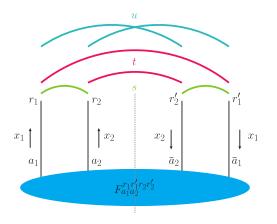
In contrast to PDFs DPDs exhibit a rich colour structure:



 \longrightarrow decompose DPDs in terms of distributions projected onto definite colour representations!

Coupling of colour indices for DPDs.

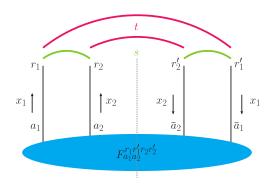
In contrast to PDFs DPDs exhibit a rich colour structure:



ightarrow decompose DPDs in terms of distributions projected onto definite colour representations!

Coupling of colour indices for DPDs.

In contrast to PDFs DPDs exhibit a rich colour structure:



ightarrow decompose DPDs in terms of distributions projected onto definite colour representations!

t- and *s*-channel DPDs.

In the *t*-channel the colour indices r_i and r'_i are coupled to an irreducible representation R_i of SU(N) such that R_1R_2 is a singlet:

$$R_1 R_2 F_{a_1 a_2} \sim P_{\overline{R_1 R_2}}^{r_1 r_1' r_2 r_2'} F_{a_1 a_2}^{r_1 r_1' r_2 r_2'} \qquad ext{ such that } \qquad F_{a_1 a_2}^{r_1 r_1' r_2 r_2'} \sim \sum_{R_1 R_2} P_{R_1 R_2}^{r_1 r_1' r_2 r_2'} R_{1 R_2} F_{a_1 a_2}$$

In the s-channel the colour indices r_1 and r_2 are coupled to an irreducible representation R and r'_1 while r'_2 are coupled to R' such that RR' is again a singlet:

$$F_{a_1 a_2}^{RR'} \sim P_{\overline{RR'}}^{r_1 r_2 r_1' r_2'} F_{a_1 a_2}^{r_1 r_1' r_2 r_2'} \qquad \text{such that} \qquad F_{a_1 a_2}^{r_1 r_1' r_2 r_2'} \sim \sum_{R,R'} P_{RR'}^{r_1 r_2 r_1' r_2'} F_{a_1 a_2}^{RR'}$$

Note that the exact form of $F_{a_1a_2}^{RR'}$ and ${}^{R_1R_2}F_{a_1a_2}$ depends on the choice of normalisation.

Colour non-singlet splitting DPDs at NLO.

[arXiv:2105.08425]

Perturbative splitting in DPDs.

In the limit of small distance y the leading contribution to a DPD is due to the perturbative splitting of one parton into two and can be calculated in perturbation theory:

$${}^{R_1R_2}F_{a_1a_2}(x_i, y, \zeta_p, \mu) \stackrel{y \to 0}{=} \frac{1}{\pi y^2} \left[{}^{R_1R_2}V_{a_1a_2, a_0}(y, \zeta_p, \mu) \mathop{\otimes}_{12} f_{a_0}(\mu) \right](x_i),$$

where

$$\left[V \underset{12}{\otimes} f\right](x_i) = \int_x^1 \frac{dz}{z^2} V\left(\frac{x_1}{z}, \frac{x_2}{z}\right) f(z)$$

LO kernels for all R_1R_2 can be found in [Diehl, Ostermeier, and Schäfer, 2012].

NLO kernels for $R_1R_2 = 11$ have been calculated in [Diehl, Gaunt, Plößl, and Schäfer, 2019].

REF 2021

Colour non-singlet splitting DPDs at NLO.

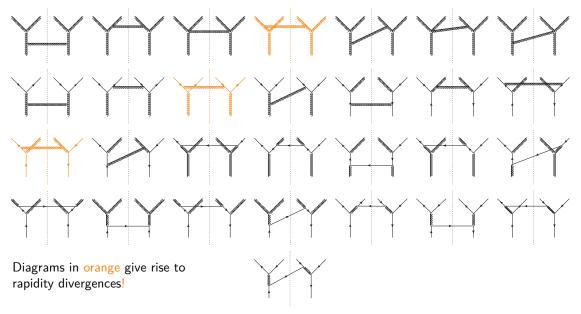
Many ingredients from the calculation of the colour singlet splitting in [Diehl, Gaunt, Plößl, and Schäfer, 2019] can be reused for the colour non-singlet case: diagrams, master integrals, Dirac algebra.

In the colour non-singlet case rapidity divergences no longer cancel after a sum over graphs and have to be treated with utmost care. For this we use two regulators:

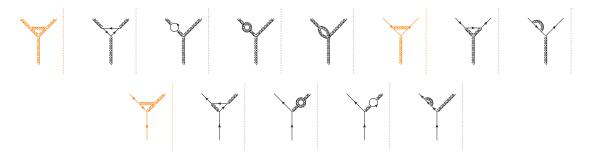
- Collins regulator using space-like Wilson lines. [Collins, 2011]
- \blacktriangleright δ regulator. [Echevarria, Scimemi and Vladimirov, 2016]

After combining the splitting DPDs calculated with these regulators with the DPS soft factor we find matching results in both schemes!

 \rightarrow First application (to our knowledge) of the Collins regulator to a two loop calculation!



Diagrams in orange give rise to rapidity divergences!



General structure of NLO colour non-singlet kernels.

Colour non-singlet kernels:

$$\begin{split} ^{R_1R_2}V^{(2)}_{a_1a_2,a_0}(z,u,y,\mu,\zeta) &= {}^{R_1R_2}V^{[2,0]}_{a_1a_2,a_0}(z,u) + L \, {}^{R_1R_2}V^{[2,1]}_{a_1a_2,a_0}(z,u) \\ &+ \left(L\log\frac{\mu^2}{\zeta} - \frac{L^2}{2} + c_{\overline{\mathrm{MS}}}\right) \frac{{}^{R_1}\gamma^{(0)}_J}{2} \, {}^{R_1R_2}V^{(1)}_{a_1a_2,a_0}(z,u) \end{split}$$

where $L = \log \frac{y^2 \mu^2}{b_0^2}$ and $b_0 = 2e^{-\gamma}$ and

$$\begin{split} ^{R_1R_2}V^{[2,0]}(z,u) &= {}^{R_1R_2}V^{[2,0]}_{\text{regular}}(z,u) + \delta(1-z)\,{}^{R_1R_2}V^{[2,0]}_{\delta}(u)\,, \\ ^{R_1R_2}V^{[2,1]}(z,u) &= {}^{R_1R_2}V^{[2,1]}_{\text{regular}}(z,u) + \frac{1}{[1-z]_+}\,{}^{R_1R_2}V^{[2,1]}_+(u) + \delta(1-z)\,{}^{R_1R_2}V^{[2,1]}_{\delta}(u) \end{split}$$

In contrast to the LO case there are – with few exceptions – no simple scaling relations between different colour channels!

REF 2021

Impact of NLO corrections on small *y* DPDs.

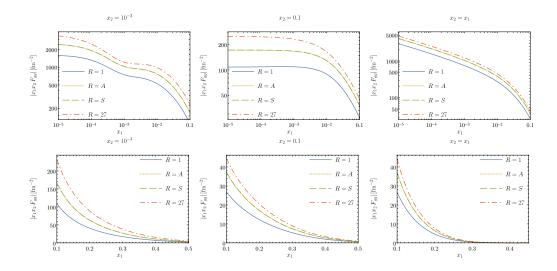
We study how including the NLO corrections effects the small $y \ gg$ DPD for the following set of parameters:

- ▶ $y = 0.022 \, \text{fm}$
- ▶ $\mu = \frac{b_0}{y} = 10 \,\text{GeV}$
- $x_1 x_2 \zeta_p = \mu^2 = 100 \,\text{GeV}^2$

For this choice of parameters only the $V^{[2,0]}$ part of the kernels contributes to the final DPD.

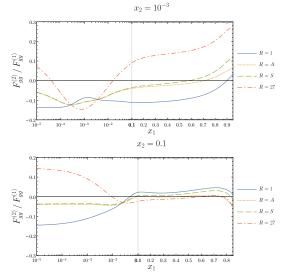
In order to get a feeling for the relative importance of the logarithmic $V^{[2,1]}$ and double logarithmic $V^{(1)}$ parts we vary μ and $\sqrt{x_1 x_2 \zeta_p}$ by a factor of two around their central values.

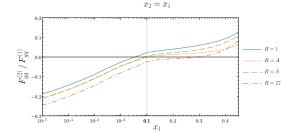
 $|x_1x_2 {}^{RR}F_{gg}|.$



11/15/2021

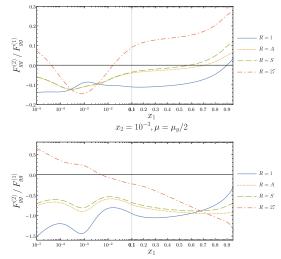
 ${}^{RR}F^{(2)}_{gg}/{}^{RR}F^{(1)}_{gg}$.

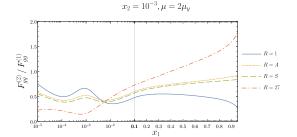




- moderate ($\mathcal{O}(10\%)$) NLO corrections.
- ▶ varied structure as a function of *x*₁ and *x*₂.
- results rather independent of PDF sets used.

 ${}^{RR}F^{(2)}_{gg}/{}^{RR}F^{(1)}_{gg}.$





- ► large ($\mathcal{O}(100\%)$) NLO corrections for $\mu \neq \mu_y$.
- ► splitting form should be evaluated at $\mu \sim \mu_y$ to avoid large higher order corrections.

Violation of positivity bounds for *s*-channel DPDs.

[arXiv:2109.14304]

Positivity bounds for *S*-channel DPDs.

Introduction.

s-channel DPDs $F_{a_1a_2}^{R\overline{R}}$ allow a density interpretation as the probability to find the parton pair a_1a_2 in any of the m(R) states of representation R. [Kasements and Mulders, 2014]

This interpretation results in the following positivity bound for *s*-channel DPDs:

$F_{a_1a_2}^{R\overline{R}} \geq 0$

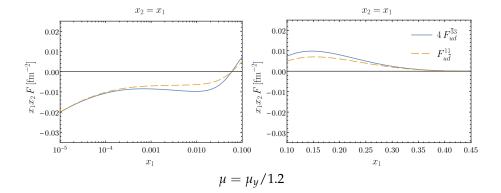
for all representations R and parton combinations a_1a_2 .

Check if these bounds are violated:

- ► Consider the small-*y* regime where DPDs are known from perturbation theory.
- Restrict discussion to quark-quark and quark-antiquark distributions (comparatively simple colour structure).
- ► Consider *s*-channel DPDs that vanish at LO: $F_{qq}^{\overline{3}3}$, $F_{qq}^{6\overline{6}}$, $F_{qq'}^{\overline{3}3}$, $F_{qq'}^{6\overline{6}}$, $F_{q\overline{q}}^{11}$, $F_{q\overline{q}}^{11}$, $F_{q\overline{q}'}^{18}$, $F_{q\overline{q}'}^{11}$, $F_{q\overline{q}'}^{88}$.

NLO *s*-channel splitting DPDs.

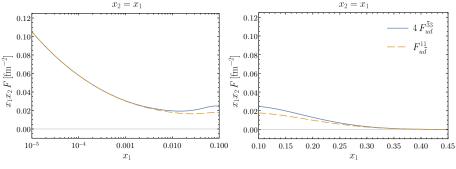
Using the same numerical setup as for the study of the *t*-channel NLO splitting contributions one can explicitly check whether the *s*-channel NLO splitting DPDs can violate positivity.



NLO *s*-channel splitting DPDs.

Using the same numerical setup as for the study of the *t*-channel NLO splitting contributions one can explicitly check whether the *s*-channel NLO splitting DPDs can violate positivity.

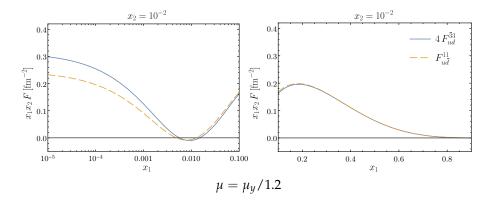
Consider to this end distributions with vanishing LO contributions:



 $\mu = \mu_y$

NLO *s*-channel splitting DPDs.

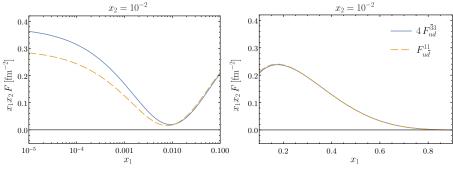
Using the same numerical setup as for the study of the *t*-channel NLO splitting contributions one can explicitly check whether the *s*-channel NLO splitting DPDs can violate positivity.



NLO *s*-channel splitting DPDs.

Using the same numerical setup as for the study of the *t*-channel NLO splitting contributions one can explicitly check whether the *s*-channel NLO splitting DPDs can violate positivity.

Consider to this end distributions with vanishing LO contributions:

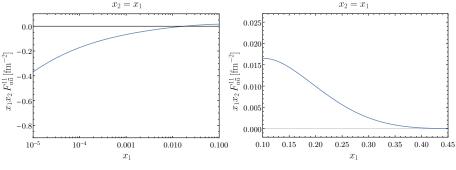


 $\mu = \mu_y$

NLO *s*-channel splitting DPDs.

Using the same numerical setup as for the study of the *t*-channel NLO splitting contributions one can explicitly check whether the *s*-channel NLO splitting DPDs can violate positivity.

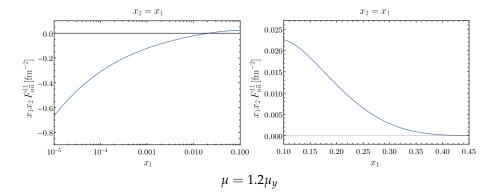
Consider to this end distributions with vanishing LO contributions:



 $\mu = \mu_y$

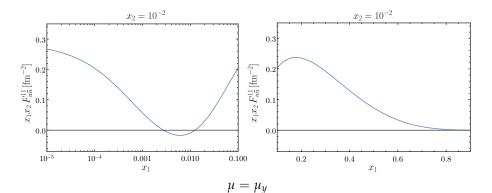
NLO *s*-channel splitting DPDs.

Using the same numerical setup as for the study of the *t*-channel NLO splitting contributions one can explicitly check whether the *s*-channel NLO splitting DPDs can violate positivity.



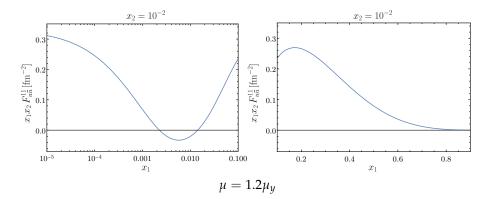
NLO *s*-channel splitting DPDs.

Using the same numerical setup as for the study of the *t*-channel NLO splitting contributions one can explicitly check whether the *s*-channel NLO splitting DPDs can violate positivity.



NLO *s*-channel splitting DPDs.

Using the same numerical setup as for the study of the *t*-channel NLO splitting contributions one can explicitly check whether the *s*-channel NLO splitting DPDs can violate positivity.



Evolution of *s***-channel DPDs.**

One can show that positivity is not necessarily conserved under LO DGLAP evolution.

Consider to this end one of the small-y s-channel distributions which are zero at LO: $F_{q\bar{q}}^{11}$.

The double DGLAP equation is most naturally formulated in the *t*-channel, where it reads:

$$\frac{\partial}{\partial \log \mu_1^2}{}^{R_1R_2}F_{q\bar{q}}(x_i, \boldsymbol{y}, \zeta_p, \mu_i) = \left[{}^{R_1R_2}P_{qq} \mathop{\otimes}\limits_{x_1}{}^{R_1R_2}F_{q\bar{q}} + \sum_{R'}{}^{R_1R'}P_{qg} \mathop{\otimes}\limits_{x_1}{}^{R'R_2}F_{g\bar{q}}\right](x_i, \boldsymbol{y}, \zeta_p, \mu_i)$$

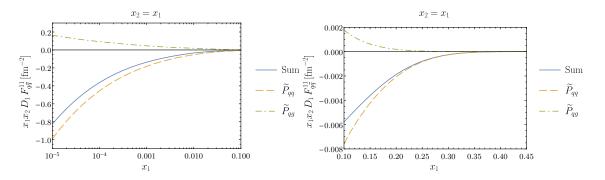
From this one can obtain the evolution equation for $F_{q\bar{q}}^{11}$ as:

$$\frac{\partial}{\partial \log \mu_1^2} F_{q\bar{q}}^{11}(x_i, \boldsymbol{y}, \zeta_p, \mu_i) = a_s \left[\widetilde{P}_{qq} \mathop{\otimes}\limits_{x_1} F_{q\bar{q}}^{88} + \frac{8}{3} \widetilde{P}_{qg} \mathop{\otimes}\limits_{x_1} F_{g\bar{q}}^{\bar{3}3} - \frac{2}{9} {}^8 \gamma_J^{(0)} \log \frac{\mu_1^2}{x_1^2 \zeta_p} F_{q\bar{q}}^{88} \right] (x_i, \boldsymbol{y}, \zeta_p, \mu_i)$$

 \longrightarrow If the rhs. is negative this implies that evolution to higher scales drives $F^{11}_{q\bar{q}}$ negative!

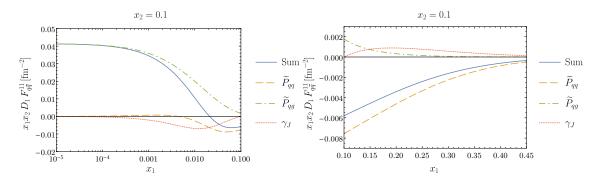
Evaluating the rhs. of the DGLAP equation.

Using the same numerical setup as before we can check explicitly if evolution to higher scales drives $F_{q\bar{q}}^{11}$ negative:



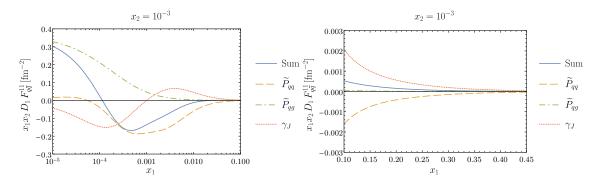
Evaluating the rhs. of the DGLAP equation.

Using the same numerical setup as before we can check explicitly if evolution to higher scales drives $F_{q\bar{q}}^{11}$ negative:



Evaluating the rhs. of the DGLAP equation.

Using the same numerical setup as before we can check explicitly if evolution to higher scales drives $F_{q\bar{q}}^{11}$ negative:



Summary.

Summary.

DPDs have a non-trivial colour structure with four open colour indices coupled to a colour singlet:

- Full colour structure can be decomposed in terms of distributions projected onto definite colour representations.
- ▶ Decomposition can be made in different "bases": *t*-, *s*-, and *u*-channel.

In the small-y limit DPDs can be calculated perturbatively, allowing us to study colour correlations:

- Already done at LO for all R_1R_2 and NLO for $R_1R_2 = 11$.
- ▶ Now also available at NLO for all R_1R_2 .

For *s*-channel DPDs positivity bounds can be derived, whose validity can be checked explicitly using the perturbative small-y DPDs:

- NLO DPDs can violate positivity for certain kinematics.
- ▶ LO evolution to higher scales is not guaranteed to preserve positivity.

Summary.

DPDs have a non-trivial colour structure with four open colour indices coupled to a colour singlet:

- Full colour structure can be decomposed in terms of distributions projected onto definite colour representations.
- ▶ Decomposition can be made in different "bases": *t*-, *s*-, and *u*-channel.

In the small-y limit DPDs can be calculated perturbatively, allowing us to study colour correlations:

- ▶ Already done at LO for all R_1R_2 and NLO for $R_1R_2 = 11$.
- ▶ Now also available at NLO for all R_1R_2 .

For *s*-channel DPDs positivity bounds can be derived, whose validity can be checked explicitly using the perturbative small-y DPDs:

- NLO DPDs can violate positivity for certain kinematics.
- ▶ LO evolution to higher scales is not guaranteed to preserve positivity.

Thank you for your attention!

Backup.

More on rapidity.

Rescaling of the rapidity parameter.

The rapidity parameters ζ_p and $\zeta_{\bar{p}}$ in this work are normalised as:

$$\zeta_p \zeta_{\bar{p}} = (2p^+ \bar{p}^-)^2 = s^2$$
 ,

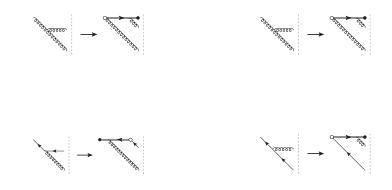
which differs from the convention in the TMD case

$$\zeta ar{\zeta} = x^2 ar{x}^2 (2p^+ ar{p}^-)^2 = Q^4$$
 ,

where the rapidity parameters are normalized w.r.t. the extracted parton, which would be awkward in the DPD case where parton momenta often appear in convolution integrals.

 \rightarrow need to rescale the rapidity parameter in renormalisation factors and evolution kernels! \rightarrow reason: can only depend on the plus-momentum $x_i p^+$ of the parton to which they refer!

From light-cone gauge diagrams to Wilson line diagrams in Feynman gauge.



Kinematic limits of the small y DPDs.

Large $x_1 + x_2$: Plus distributions in the kernels lead to a $\log(1 - x_1 - x_2)$ enhancement in the DPDs. $\Rightarrow g \rightarrow gg, g \rightarrow q\bar{q}$, and $q \rightarrow qg$

 $\frac{\text{Small } x_1 + x_2}{\text{by } z^{-2} \text{ terms in the kernels (in analogy to } z^{-1} \text{ terms in DGLAP kernels).}}$

▶ $g \rightarrow gg$, $g \rightarrow q\bar{q}$, and $q \rightarrow gg$ (in almost all colour channels)

Small x_1 or x_2 : Corresponds to the small u and small \bar{u} limit, with leading contributions going as u^{-1} and \bar{u}^{-1} due to slow gluons.

► $g \to gg, q \to gg, g \to qg (u^{-1} \& \overline{u}^{-1}), q \to qg, \text{ and } q \to qq' (\overline{u}^{-1})$

Find two sources for this behaviour in small y DPDs:

• Explicit u^{-1} and \bar{u}^{-1} terms in the kernels.

•
$$(1-z\bar{u})^{-1} \sim (k^+ - k_2^+)^{-1}$$
, $(1-zu)^{-1} \sim (k^+ - k_1^+)^{-1}$ and similar terms.

Colour non-singlet evolution kernels.

The colour non-singlet evolution kernels have in the *t*-channel double DGLAP equation for $R_1R_2F_{q\bar{q}}$ on slide 18 have the following structure:

$${}^{RR'}P_{qa}(z,\zeta,\mu) = a_s \left[c_{RR'} \widetilde{P}_{qb}(z) + \delta_{RR'} \delta(1-z) \left(\frac{\gamma_q^{(0)}(\mu)}{2} + \frac{{}^R \gamma_J^{(0)}(\mu)}{2} \log \frac{\mu^2}{\zeta} \right) \right] + \mathcal{O}(a_s^2)$$

where

$$c_{11} = 1$$
, $c_{88} = -\frac{1}{8}$, $c_{8S} = \frac{\sqrt{5}}{4}$, $c_{8A} = \frac{3}{4}$

and

$$\gamma_q(\mu) = 3 C_F a_s(\mu) + \mathcal{O}(a_s^2), \qquad {}^1\gamma_J(\mu) = 0, \qquad {}^8\gamma_J(\mu) = 2 C_A a_s(\mu) + \mathcal{O}(a_s^2)$$