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Transverse momentum dependent factorization

dσ

dqT
' σ0

∫
d2b

(2π)2
e−i(bqT )|CV (Q)|2F1(x1, b;Q,Q

2)F2(x2, b;Q,Q
2)

←− LP

LP term is studied VERY WELL!

SIDIS Drell-Yan SIA

q is momentum of initiating EW-boson
q2 = ±Q2

qµT transverse component


Q2 � Λ2

QCD

Q2 � q2
T
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Transverse momentum dependent factorization

dσ

dqT
' σ0

∫
d2b

(2π)2
e−i(bqT )

{
|CV (Q)|2F1(x1, b;Q,Q

2)F2(x2, b;Q,Q
2) ←− LP

+
qT

Q
[C2(Q)⊗ F3(x, b;Q,Q2)F4(x, b;Q,Q2)](x1, x2) ←− NLP

+
q2
T

Q2
[C3(Q)⊗ F5(x, b;Q,Q2)F6(x, b;Q,Q2)](x1, x2) ←− NNLP

+...

Outline

I General approach to TMD factorization

I Systematics of power-suppressed TMD operators (distributions)

I TMD factorization at NLP/NLO
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Motivation

I Sub-leading power observables

To describe it, one needs TMD
factorization at NNLP.

I JLab

I LHC
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LP TMD factorization has
limited region of application.

For SIDIS it cuts
the most part of the data

[Bacchetta,et al,1901.06916]

EIC

Phase space of EIC is centered
directly in

the transition region

COMPASS, JLab
have large contribution of power corrections
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Motivation

I Sub-leading power observables

I Increase of applicability domain

I Restoration of broken properties

LP TMD factorization breaks EM-gauge invariance

Wµν =

∫
dyeiqy〈Jµ(y)Jν(0)〉

qµW
µν = 0

Wµν
LP = gµνT |CV |

2F(F1F2)

qµW
µν
LP ∼ q

ν
T

I The violation is of the NLP

I Similar problem with frame-dependence (GTMD case)
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There are already computations of TMD factorization at NLP/NNLP

I Small-x-like
I Balitksy [1712.09389],[2012.01588],...
I Nefedov, Saleev, [1810.04061],[1906.08681]

I SCET
I Ebert, et al [1812.08189] resummation
I Inglis-Whalen, et al [2105.09277]
I Beneke, et al, [1712.04416],[1808.04742],... not TMD, but closely related

I Boer, Mulders, Pijlman [hep-ph/0303034]

I ...

I suggest another method to derive TMD factorization

TMD operator expansion

I Based on the experience of higher-twist, and higher power computations in collinear
factorization
I Systematicness of OPE
I Operator level
I Position space [a lot of simplification for beyond leading twist]

I Has common parts with small-x and SCET computations
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Sources of power corrections

dσ

dP.S.
= σPSLµνW

µν

∗(exact)=known at all powers

Phase space PC (exact)

e.g. SIDIS σPS =
π√

1 + γ2 p2
h⊥

z2Q2

Leptonic tensor (exact)
e.g. un.DY with fid.cuts

Lµν ∼ (lµl′ν + lν l′µ − gµν(ll′))P
• l, l′ with transverse parts

• P fiducial part

Hadronic tensor (e.g. DY)

Wµν=

∫
d4yei(yq)

(2π)4
〈p1p2|Jµ(y)|X〉〈X|Jν |p1p2〉

Factorized in powers of
qT

q+
,
qT

q−

(
not

qT

Q

)
because

{y+, y−, yT } ∼ Q−1{1, 1, λ−1}

Power corrections due to frame choice (exact)
p+

1 � p−1 , p−2 � p+
2

e.g. SIDIS q2
T =

p2
⊥
z2

1 + γ2

1− γ2 p2⊥
z2Q2

QCD Factorization
(this talk)
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The most efficient way to study power corrections: OPE + background formalism

I Many (so far) results unreachable by other methods
I Twist-3, twist-4 evolution kernels [Braun,Manashov,08-09]
I Coefficient function for various observables (e.g. quasi-PDFs at twist-3

[Braun,Ji,AV,20-21])
I All-Power corrections (DVCS [Braun,Manashov,17-21], target-mass corrections

to TMDs [Moos,AV,20])

I Clear and strict formulation ⇒ Simple computation

I Twist-decomposition

DVCS

Jµ(z)Jν(0)
OPE−−−−−→

∞∑
n=0

zn[Cµνn ⊗On](z+)

Leading power ⇒ GPDs

violates EM Ward identities
and translation invariance

power operators

0

1

2

...

q̄[..]q

q̄[..]q

q̄[..]q

q̄Fµ+[..]q

q̄Fµ+[..]q q̄Fµ+Fν+[..]q
q̄[..]qq̄[..]q
q̄Fµ+[..]γ−q

tw2 tw3 tw4

All properties restored

All properties restored

...

Independent
Do not mix

TMD factorization
has same structure
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Background QCD with 2-component background

q → qn + qn̄ + ψ Aµ → Aµn +Aµn̄ +Bµ

collinear-fields
(associated with hadron 1)

{∂+, ∂−, ∂T } qn̄ . Q{1, λ2, λ} qn̄,

{∂+, ∂−, ∂T }Aµn̄ . Q{1, λ2, λ}Aµn̄,

anti-collinear-fields
(associated with hadron 2)

{∂+, ∂−, ∂T } qn . Q{λ2, 1, λ} qn,

{∂+, ∂−, ∂T }Aµn . Q{λ2, 1, λ}Aµn.
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Details & examples
in [2109.09711]J (+)µ(y)J (−)ν(0)

Keldysh thechnique
to deal with

causality structure

(power) Expand in background fields

q̄n̄(y−n+ yT )γµT qn(y+n̄+ yT )q̄n(0)γνT qn̄(0) + ψ̄n̄(y)γµT qn(y+n̄+ yT )q̄n(0)γνT qn̄(0) + ...

+nµq̄n̄(y−n+ yT )γ−qn(y+n̄+ yT )q̄n(0)γνT qn̄(0) + ...

+y+q̄n̄(y−n+ yT )
←−
∂−γ

−qn(y+n̄+ yT )q̄n(0)γνT qn̄(0) + ...

(loop) Integrate over fast components
with 2-bcg.QCD action

at least NLO is needed
to confirm factorization

(WL direction,
pole-cancelation)

Process ⇔ boundary conditionsTake matrix element,
parametrize TMDs,

cross-section

Just like ordinary
derivation

of factorization
with OPE

the “only” difference is here

yµT∂µ ∼ 1
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TMD operator expansion
has different geometry

y

Jµ

Jν

nn̄

q̄

q

q̄

q

Collinear factorization
yµ ∼ Q−1{1, 1, 1}

Two
light-cone operators

⇓
Two

parton distribution function
PDFs & FFs

q̄i(λn)[λn, 0]qj(0)

nn̄ nn̄

q̄

q

TMD factorization
yµ ∼ Q−1{1, 1, λ−1}

Four
light-cone operators

⇓
Two

TMD distributions
TMDPDFs & TMDFFs

yT = b
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⇓
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yT = b
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TMD-twist

Each light-cone operator must be twist-decomposed

I Geometrical twist = dimension - spin (projected to light-cone)

I Half-integer spin operators

I (q̄γ
+
γ
−

)i = twist-1 ( 3
2 −

1
2 )

I (q̄γ
−
γ
+

)i = twist-indefinite ⇒ EOM ⇒
(
q̄γ

+

←−
6∂T
←−
∂+

)
i︸ ︷︷ ︸

tot.der.
twist-1

+

∫
(q̄γ

µ
Fµ+γ

+
)i︸ ︷︷ ︸

twist-2

Twist of the TMD operator is enumerated by twists of each light-cone
components (N,M) =TMD-twist

e.g. usual TMD operator
twist-1︷ ︸︸ ︷

q̄(λn+ b)[λn+ b,±∞n+ b] γ+

twist-1︷ ︸︸ ︷
[±∞n, 0]q(0)︸ ︷︷ ︸

TMD-twist=(1,1)
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Operators with different TMD-twists do not mix
renormalization/evolution is independent

independent TMD distributions

Evolution of TMD operator with TMD-twist=(N,M)

ONM ({z1, ..., zk}, b) = UN ({z1, ...}, b)UM ({..., zk}, 0T )

I Each light-cone operator U renormalizes independently (because there is a finite yT
between them)

µ
d

dµ
UN ({z1, ...}, b) = γN ⊗ UN ({z1, ...}, b)

I Light-cone operators with different N do not mix (Lorentz invariance!)

I Evolution of TMD operator

µ
d

dµ
ONM ({z1, ...}, b) = (γN + γM )⊗ONM ({z1, ...}, b)

I (Note) operators with TMD twist (N,M) do not mix with (M,N)

I 4 independent structures at NLP: (2, 1) × (1, 1), (1, 2) × (1, 1), (1, 1) × (2, 1), (1, 1) × (1, 2)

I 10 independent structures at NNLP: (3, 1) × (1, 1),... (2, 2) × (1, 1),... (1, 2) × (2, 1), ...

I + total.derivatives!
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Rapidity divergences
appears due to overlap of the fields in the soft region

collinear-fields & anti-collinear
are the same at

{∂+, ∂−, ∂T } q . Q{λ2, λ2, λ} q,

{∂+, ∂−, ∂T }Aµ . Q{λ2, λ2, λ}Aµ,

I (or) Introduce separating-scale

I (or) Subtract by soft-factor

I (or) ...
⇒ multiplicative renormalization

[AV,1707.07606] ⇒ evolution equation with ζ

ζ
d

dζ
ONM ({z1, ...}, b) = −D(b)ONM ({z1, ...}, b)
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TMD factorization at NLP

Effective operator for any process (DY, SIDIS, SIA)

I Operators of (1, 1)× (1, 1) (ordinary TMDs)

Oij11(x, b) = p+

∫
dλ

2π
e−ixλp+ q̄j [λn+ b,±∞n+ b][±∞n, 0]qi

I Contains LP and NLP (total derivatives)

I Restores EM gauge invariance up to λ3

qµJ
µν
1111 ∼ (p−1 qT + p+

2 qT )J1111

I Operators of (1, 2)× (1, 1)

Oij12(x1,2,3, b) = p2
+

∫
dz1,2,3

2π
e−ix

izip+ q̄j [z1n+ b,±∞n+ b][±∞n, z2n]γµFµ+[z2n, z3n]qi

I EM gauge invarint only up to NNLP

qµJ
µν
1211 ∼ (p−1 + p+

2 )J1211

I Coefficient functions up to NLO

I C1 is know up to N3LO

I C1 is same for LP, NLP, ... parts of operator Jµν1111
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I Restores EM gauge invariance up to λ3

qµJ
µν
1111 ∼ (p−1 qT + p+

2 qT )J1111

I Operators of (1, 2)× (1, 1)

Oij12(x1,2,3, b) = p2
+

∫
dz1,2,3

2π
e−ix

izip+ q̄j [z1n+ b,±∞n+ b][±∞n, z2n]γµFµ+[z2n, z3n]qi

I EM gauge invarint only up to NNLP

qµJ
µν
1211 ∼ (p−1 + p+

2 )J1211

I Coefficient functions up to NLO

I C1 is know up to N3LO

I C1 is same for LP, NLP, ... parts of operator Jµν1111
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Evolution for NLP TMD operators (distributions)

µ2 dONM

dµ2
(µ, ζ) = (γN (µ, ζ) + γM (µ, ζ))⊗ONM (µ, ζ)

ζ
dONM

dζ
(µ, ζ) = −D(b, µ)⊗ONM (µ, ζ)

I γ1 = asCF

(
3
2

+ ln(µ2/ζ)
)

+ ... (known up to N3LO)

I γ2 = as{2H1 + γ1 +
lnx1

Nc
−Nc lnx2}+ a2

s...

I H1 is the Bukhvostov-Frolov-Lipatov-Kuraev kernel for qF

I D is CS-kernel (non-perturbative)
I Same for LP and NLP operators!

I For higher power operators evolution has same structure
I UV AD at NLO can be easily reconstructed from [Braun,Manashov,Rohrwild,09] (+

cusps)
I CS-kernel is identical for all quasi-partonic operators

A.Vladimirov Power for TMD November 16, 2021 14 / 15



Conclusion

TMD operator expansion – an efficient approach to TMD factorization beyond LP

I Operator level

I Position space

I Strict & intuitive rules for operator sorting (TMD-twist)

I All processes

TMD factorization at NLP is derived

I Coefficient function at NLO

I Evolution at NLO

I Rapidity evolution of NLP is the same as for LP

I Some results are simple to generalize beyond NLP
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