Power corrections in TMD factorization based on［2109．09771］

Alexey Vladimirov
Regensburg University

REF
RESUMMATION，EVOLUTION， FACTORIZATION WORKSHOP

NOVEMBER 15－19， 2021
https：／／indico．desy．de／event／28334／

Transverse momentum dependent factorization

$$
\frac{d \sigma}{d q_{T}} \simeq \sigma_{0} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(b q_{T}\right)}\left|C_{V}(Q)\right|^{2} F_{1}\left(x_{1}, b ; Q, Q^{2}\right) F_{2}\left(x_{2}, b ; Q, Q^{2}\right)
$$

LP term is studied VERY WELL!

q is momentum of initiating EW-boson
$q^{2}= \pm Q^{2}$
q_{T}^{μ} transverse component

$$
\left\{\begin{array}{c}
Q^{2} \gg \Lambda_{Q C D}^{2} \\
Q^{2} \gg q_{T}^{2}
\end{array}\right.
$$

Transverse momentum dependent factorization

$$
\begin{array}{rlrl}
\frac{d \sigma}{d q_{T}} \simeq & \sigma_{0} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(b q_{T}\right)}\left\{\left|C_{V}(Q)\right|^{2} F_{1}\left(x_{1}, b ; Q, Q^{2}\right) F_{2}\left(x_{2}, b ; Q, Q^{2}\right)\right. & \longleftarrow \mathrm{LP} \\
& +\frac{q_{T}}{Q}\left[C_{2}(Q) \otimes F_{3}\left(x, b ; Q, Q^{2}\right) F_{4}\left(x, b ; Q, Q^{2}\right)\right]\left(x_{1}, x_{2}\right) & \longleftarrow \mathrm{NLP} \\
& +\frac{q_{T}^{2}}{Q^{2}}\left[C_{3}(Q) \otimes F_{5}\left(x, b ; Q, Q^{2}\right) F_{6}\left(x, b ; Q, Q^{2}\right)\right]\left(x_{1}, x_{2}\right) & \longleftarrow \text { NNL } \\
& +\ldots & &
\end{array}
$$

Outline

- General approach to TMD factorization
- Systematics of power-suppressed TMD operators (distributions)
- TMD factorization at NLP/NLO

Motivation

- Sub-leading power observables

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{\mathbf{T}}^{Z} \mathrm{~d} y^{Z} \mathrm{~d} m^{Z} \mathrm{~d} \cos \theta \mathrm{~d} \phi} & =\frac{3}{16 \pi} \frac{\mathrm{~d} \sigma^{U+L}}{\mathrm{~d} p_{\mathrm{T}}^{Z} \mathrm{~d} y^{Z} \mathrm{~d} m^{Z}} \\
& \left\{\left(1+\cos ^{2} \theta\right)+\frac{1}{2} A_{0}\left(1-3 \cos ^{2} \theta\right)+A_{1} \sin 2 \theta \cos \phi\right. \\
& +\frac{1}{2} A_{2} \sin ^{2} \theta \cos 2 \phi+A_{3} \sin \theta \cos \phi+A_{4} \cos \theta \\
& \left.+A_{5} \sin ^{2} \theta \sin 2 \phi+A_{6} \sin 2 \theta \sin \phi+A_{7} \sin \theta \sin \phi\right\}
\end{aligned}
$$

To describe it, one needs TMD factorization at NNLP.

- JLab
- LHC

Universitãt Regensburg

Motivation

- Sub-leading power observables
- Increase of applicability domain

> LP TMD factorization has limited region of application.
For SIDIS it cuts the most part of the data

Motivation

- Sub-leading power observables
- Increase of applicability domain

Phase space of EIC is centered directly in
the transition region
COMPASS, JLab
have large contribution of power corrections

Motivation

- Sub-leading power observables
- Increase of applicability domain
- Restoration of broken properties

LP TMD factorization breaks EM-gauge invariance

$$
\begin{array}{cc}
W^{\mu \nu}=\int d y e^{i q y}\left\langle J^{\mu}(y) J^{\nu}(0)\right\rangle & W_{\mathrm{LP}}^{\mu \nu}=g_{T}^{\mu \nu}\left|C_{V}\right|^{2} \mathcal{F}\left(F_{1} F_{2}\right) \\
q_{\mu} W^{\mu \nu}=0 & q_{\mu} W_{\mathrm{LP}}^{\mu \nu} \sim q_{T}^{\nu}
\end{array}
$$

- The violation is of the NLP
- Similar problem with frame-dependence (GTMD case)

Universitãt Regensburg

There are already computations of TMD factorization at NLP/NNLP

- Small-x-like
- Balitksy [1712.09389],[2012.01588],...
- Nefedov, Saleev, [1810.04061],[1906.08681]
- SCET
- Ebert, et al [1812.08189] resummation
- Inglis-Whalen, et al [2105.09277]
- Beneke, et al, [1712.04416],[1808.04742],... not TMD, but closely related
- Boer, Mulders, Pijlman [hep-ph/0303034]
- \ldots

I suggest another method to derive TMD factorization

TMD operator expansion

- Based on the experience of higher-twist, and higher power computations in collinear factorization
- Systematicness of OPE
- Operator level
- Position space [a lot of simplification for beyond leading twist]
- Has common parts with small-x and SCET computations

Sources of power corrections

* $($ exact $)=$ known at all powers
Phase space PC (exact) $\quad \square \quad \square \quad$ Hadronic tensor (e.g. DY)
e.g. SIDIS $\sigma_{P S}=\frac{\pi}{\sqrt{1+p^{2}}}$
$W^{\mu \nu}=\int \frac{d^{4} y e^{i(y q)}}{(2 \pi)^{4}}\left\langle p_{1} p_{2}\right| J^{\mu}(y)|X\rangle\langle X| J^{\nu}\left|p_{1} p_{2}\right\rangle$
Leptonic tensor (exact) e.g. un.DY with fid.cuts
$L^{\mu \nu} \sim\left(l^{\mu} l^{\prime \nu}+l^{\nu} l^{\prime \mu}-g^{\mu \nu}\left(l l^{\prime}\right)\right) \mathcal{P}$
- l, l^{\prime} with transverse parts
- \mathcal{P} fiducial part

$$
\begin{align*}
& \left.\qquad \begin{array}{c}
\text { Factorized in powers of } \\
\frac{q_{T}}{q^{+}}, \frac{q_{T}}{q^{-}} \quad\left(\text { not } \frac{q_{T}}{Q}\right) \\
\text { because } \\
\left\{y^{+}, y^{-}, y_{T}\right\} \sim Q^{-1}\left\{1,1, \lambda^{-1}\right\}
\end{array}\right] \\
& \text { corrections due to frame choice (exact) } \\
& p_{1}^{+} \gg p_{1}^{-}, \quad p_{2}^{-}>p_{2}^{+} \\
& \text {e.g. SIDIS } q_{T}^{2}=\frac{p_{\perp}^{2}}{z^{2}} \frac{1+\gamma^{2}}{1-\gamma^{2} \frac{p_{\perp}^{2}}{z^{2} Q^{2}}}
\end{align*}
$$

Power corrections due to frame choice (exact)

Sources of power corrections

- Many (so far) results unreachable by other methods
- Twist-3, twist-4 evolution kernels [Braun,Manashov,08-09]
- Coefficient function for various observables (e.g. quasi-PDFs at twist-3 [Braun,Ji,AV,20-21])
- All-Power corrections (DVCS [Braun,Manashov,17-21], target-mass corrections to TMDs [Moos, AV, 20])
- Clear and strict formulation \Rightarrow Simple computation
- Twist-decomposition

DVCS
$J^{\mu}(z) J^{\nu}(0) \xrightarrow{\text { OPE }} \sum_{n=0}^{\infty} z^{n}\left[C_{n}^{\mu \nu} \otimes O_{n}\right]\left(z^{+}\right)$

Leading power \Rightarrow GPDs
violates EM Ward identities and translation invariance

Universităt Regensburg

- Many (so far) results unreachable by other methods
- Twist-3, twist-4 evolution kernels [Braun,Manashov,08-09]
- Coefficient function for various observables (e.g. quasi-PDFs at twist-3 [Braun,Ji,AV,20-21])
- All-Power corrections (DVCS [Braun,Manashov,17-21], target-mass corrections to TMDs [Moos, AV, 20])
- Clear and strict formulation \Rightarrow Simple computation
- Twist-decomposition

DVCS
$J^{\mu}(z) J^{\nu}(0) \xrightarrow{\text { OPE }} \sum_{n=0}^{\infty} z^{n}\left[C_{n}^{\mu \nu} \otimes O_{n}\right]\left(z^{+}\right)$

power	operators		
0	$\bar{q}[.] q$.		
1	$\bar{q}[.] q$.	$\bar{q} F_{\mu+[. .] q}$	
2	$\bar{q}[.] q$.	$\bar{q} F_{\mu+[. .] q}$	$\bar{q} F_{\mu+} F_{\nu+}[.] q$. $\bar{q}[.]. q \bar{q}[.] q$. $\bar{q} F_{\mu+}[..] \gamma^{-} q$
\ldots	$\operatorname{tw} 2$	$\operatorname{tw} 3$	$\operatorname{tw} 4$

The most efficient way to study power corrections: OPE + background formalism

- Many (so far) results unreachable by other methods
- Twist-3, twist-4 evolution kernels [Braun,Manashov,08-09]
- Coefficient function for various observables (e.g. quasi-PDFs at twist-3 [Braun,Ji,AV,20-21])
- All-Power corrections (DVCS [Braun,Manashov,17-21], target-mass corrections to TMDs [Moos,AV,20])
- Clear and strict formulation \Rightarrow Simple computation
- Twist-decomposition

Background QCD with 2-component background

$$
q \rightarrow q_{n}+q_{\bar{n}}+\psi \quad A^{\mu} \rightarrow A_{n}^{\mu}+A_{\bar{n}}^{\mu}+B^{\mu}
$$

collinear-fields (associated with hadron 1)
$\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} q_{\bar{n}} \lesssim Q\left\{1, \lambda^{2}, \lambda\right\} q_{\bar{n}}$, $\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} A_{\bar{n}}^{\mu} \lesssim Q\left\{1, \lambda^{2}, \lambda\right\} A_{\bar{n}}^{\mu}$,
anti-collinear-fields
(associated with hadron 2)
$\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} q_{n} \lesssim Q\left\{\lambda^{2}, 1, \lambda\right\} q_{n}$,
$\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} A_{n}^{\mu} \lesssim Q\left\{\lambda^{2}, 1, \lambda\right\} A_{n}^{\mu}$.

Details \& examples
in [2109.09711]

Universitãt Regensburg

$$
\overbrace{}^{T(+) \mu(\eta) . J(-) \nu(\Omega)}
$$

Details \& examples

in [2109.09711]
(power) Expand in background fields sort operators

$$
\begin{gathered}
\bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \gamma_{T}^{\mu} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\bar{\psi}_{\bar{n}}(y) \gamma_{T}^{\mu} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots \\
\quad+n^{\mu} \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \gamma^{-} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots \\
\quad+y^{+} \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \overleftarrow{\partial_{-}} \gamma^{-} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots
\end{gathered}
$$

Universităt Regensburg

$$
\frac{J^{(+) \mu}(y) J^{(-) \nu}(0)}{1}
$$

Details \& examples
in [2109.09711]
(power) Expand in background fields sort operators

$$
\begin{gathered}
\bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \gamma_{T}^{\mu} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\bar{\psi}_{\bar{n}}(y) \gamma_{T}^{\mu} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots \\
\quad+n^{\mu} \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \gamma^{-} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots \\
\quad+y^{+} \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \delta_{-} \gamma^{-} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots
\end{gathered}
$$

at least NLO is needed to confirm factorization (WL direction, pole-cancelation)
(loop) Integrate over fast components
with 2-bcg.QCD action

$$
\text { Process } \Leftrightarrow \text { boundary conditions }
$$

Universităt Regensburg

$$
\underbrace{J^{(+) \mu}(y) J^{(-) \nu}(0)}
$$

Details \& examples

 in [2109.09711](power) Expand in background fields sort operators

$$
\begin{gathered}
\bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \gamma_{T}^{\mu} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\bar{\psi}_{\bar{n}}(y) \gamma_{T}^{\mu} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots \\
\quad+n^{\mu} \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \gamma^{-} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots \\
\quad+y^{+} \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \delta_{-} \gamma^{-} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots
\end{gathered}
$$

(loop) Integrate over fast components
with 2-bcg.QCD action

Take matrix element, parametrize TMDs,

$$
\frac{J^{(+) \mu}(y) J^{(-) \nu}(0)}{1}
$$

Details \& examples in [2109.09711]
(lon)/ntegrate over fast components
Just like ordinary derivation of factorization with OPE
the "only" difference is here $y_{T}^{\mu} \partial_{\mu} \sim 1$
with 2-bcg.QCD action
 cross-section

TMD operator expansion has different geometry

TMD operator expansion has different geometry

$$
\bar{q}_{i}(\lambda n+b)[\lambda n+b, \pm \infty n+b] \quad[\pm \infty n, 0] q_{j}(0)
$$

TMD operator expansion has different geometry

Four

light-cone operators
\Downarrow
Two
TMD distributions TMDPDFs \& TMDFFs

Universitãt Regensburg

TMD-twist

Each light-cone operator must be twist-decomposed

- Geometrical twist $=$ dimension - spin (projected to light-cone)
- Half-integer spin operators
- $\left(\bar{q} \gamma^{+} \gamma^{-}\right)_{i}=$ twist-1 $\left(\frac{3}{2}-\frac{1}{2}\right)$
- $\left(\bar{q} \gamma^{-} \gamma^{+}\right)_{i}=$ twist-indefinite $\Rightarrow \mathrm{EOM} \Rightarrow \underbrace{\left(\bar{q} \gamma^{+} \frac{\overleftarrow{\partial_{T}}}{\overleftarrow{\delta_{+}}}\right)_{i}}_{\begin{array}{c}\text { tot.der. } \\ \text { twist-1 }\end{array}}+\underbrace{\int\left(\bar{q} \gamma^{\mu} F_{\mu+\gamma^{+}}\right)_{i}}_{\text {twist-2 }}$

Twist of the TMD operator is enumerated by twists of each light-cone components (N, M) = TMD-twist

Operators with different TMD-twists do not mix

renormalization/evolution is independent independent TMD distributions

Evolution of TMD operator with TMD-twist $=(\mathrm{N}, \mathrm{M})$

$$
O_{N M}\left(\left\{z_{1}, \ldots, z_{k}\right\}, b\right)=\bar{U}_{N}\left(\left\{z_{1}, \ldots\right\}, b\right) U_{M}\left(\left\{\ldots, z_{k}\right\}, 0_{T}\right)
$$

- Each light-cone operator U renormalizes independently (because there is a finite y_{T} between them)

$$
\mu \frac{d}{d \mu} U_{N}\left(\left\{z_{1}, \ldots\right\}, b\right)=\gamma_{N} \otimes U_{N}\left(\left\{z_{1}, \ldots\right\}, b\right)
$$

- Light-cone operators with different N do not mix (Lorentz invariance!)
- Evolution of TMD operator

$$
\mu \frac{d}{d \mu} O_{N M}\left(\left\{z_{1}, \ldots\right\}, b\right)=\left(\bar{\gamma}_{N}+\gamma_{M}\right) \otimes O_{N M}\left(\left\{z_{1}, \ldots\right\}, b\right)
$$

- (Note) operators with TMD twist (N,M) do not mix with (M,N)
-4 independent structures at NLP: $(2,1) \times(1,1),(1,2) \times(1,1),(1,1) \times(2,1),(1,1) \times(1,2)$
-10 independent structures at NNLP: $(3,1) \times(1,1), \ldots(2,2) \times(1,1), \ldots(1,2) \times(2,1), \ldots$
$>$ + total.derivatives!

Rapidity divergences

appears due to overlap of the fields in the soft region
collinear-fields \& anti-collinear are the same at

$$
\begin{aligned}
\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} q & \lesssim Q\left\{\lambda^{2}, \lambda^{2}, \lambda\right\} q \\
\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} A^{\mu} & \lesssim Q\left\{\lambda^{2}, \lambda^{2}, \lambda\right\} A^{\mu}
\end{aligned}
$$

- (or) Introduce separating-scale
- (or) Subtract by soft-factor
- (or) ...
\Rightarrow multiplicative renormalization $[A V, 1707.07606] \Rightarrow$ evolution equation with ζ $\zeta \frac{d}{d \zeta} O_{N M}\left(\left\{z_{1}, \ldots\right\}, b\right)=-\mathcal{D}(b) O_{N M}\left(\left\{z_{1}, \ldots\right\}, b\right)$

TMD factorization at NLP

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{align*}
& \mathcal{J}_{\text {eff }}^{\mu \nu}(q)=\int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\int d x d \tilde{x} \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right)\left|C_{1}\right|^{2} \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)\right. \tag{6.17}\\
&+ \int[d x] d \tilde{x} \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right) \\
& \times\left(\delta\left(x_{1}-\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{1}^{*} C_{2}\left(x_{2,3}\right) \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)+\delta\left(x_{3}+\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{2}^{*}\left(x_{1,2}\right) C_{1} \mathcal{J}_{2111}^{\mu \nu}(x, \tilde{x}, b)\right) \\
&+ \int d x[d \tilde{x}] \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \\
& \times\left(C_{1}^{*} C_{2}\left(\tilde{x}_{2,3}\right) \delta\left(\tilde{x}_{1}-\frac{q^{-}}{p_{2}^{-}}\right) \mathcal{J}_{1112}^{\mu \nu}(x, \tilde{x}, b)+C_{2}^{*}\left(\tilde{x}_{1,2}\right) C_{1} \delta\left(\tilde{x}_{3}+\frac{q^{-}}{p_{2}^{-}}\right) \mathcal{J}_{1121}^{\mu \nu}(x, \tilde{x}, b)\right) \\
&\quad+\ldots\}
\end{align*}
$$

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{align*}
& \mathcal{J}_{\text {eff }}^{\mu \nu}(q)=\int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\left.\int d x d \tilde{x} \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right) \right\rvert\, C_{1}{ }^{2} \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)\right. \tag{6.17}\\
& \quad+\int[d x] d \tilde{x} \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right)
\end{align*}
$$

$$
\begin{aligned}
& \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)=\frac{\gamma_{T, i j}^{\mu} \gamma_{T, k l}^{\nu}}{N_{c}}\left(\mathcal{O}_{11, \bar{n}}^{l i}(x, b) \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)+\overline{\mathcal{O}}_{11, \bar{n}}^{j k}(x, b) \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right) \\
& \quad+i \frac{n^{\mu} \gamma_{T, i j}^{\rho} \gamma_{T, k l}^{\nu}+n^{\nu} \gamma_{T, i j}^{\mu} \gamma_{T, k l}^{\rho}}{q^{+} N_{c}}\left(\partial_{\rho} \mathcal{O}_{11, \bar{n}}^{l i}(x, b) \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)+\partial_{\rho} \overline{\mathcal{O}}_{11, \bar{n}}^{j k}(x, b) \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right) \\
& \quad+i \frac{\bar{n}^{\mu} \gamma_{T, i j}^{\rho} \gamma_{T, k l}^{\nu}+\bar{n}^{\nu} \gamma_{T, i j}^{\mu} \gamma_{T, k l}^{\rho}}{q^{-} N_{c}}\left(\mathcal{O}_{11, \bar{n}}^{l i}(x, b) \partial_{\rho} \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)+\overline{\mathcal{O}}_{11, \bar{n}}^{j k}(x, b) \partial_{\rho} \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right),
\end{aligned}
$$

- Operators of $(1,1) \times(1,1)$ (ordinary TMDs)

$$
\mathcal{O}_{11}^{i j}(x, b)=p_{+} \int \frac{d \lambda}{2 \pi} e^{-i x \lambda p_{+}} \bar{q}_{j}[\lambda n+b, \pm \infty n+b][\pm \infty n, 0] q_{i}
$$

- Contains LP and NLP (total derivatives)
- Restores EM gauge invariance up to λ^{3}

$$
q_{\mu} J_{1111}^{\mu \nu} \quad \sim\left(p_{1}^{-} q_{T}+p_{2}^{+} q_{T}\right) J_{1111}
$$

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{align*}
& \mathcal{J}_{\text {eff }}^{\mu \nu}(q)=\int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\int d x d \tilde{x} \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right)\left|C_{1}\right|^{2} \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)\right. \tag{6.17}\\
& \quad+\int[d x] d \tilde{x} \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right) \\
& \quad \times\left(\delta\left(x_{1}-\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{1}^{*} C_{2}\left(x_{2},\right) \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)-\delta\left(x_{3}+\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{2}^{*}\left(x_{1,2}\right) C_{1} \mathcal{J}_{2111}^{\mu \nu}(x, \tilde{x}, b)\right) \\
& \quad+\int d x[d \tilde{x}] \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \tag{x}\\
& \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)= \\
& \frac{i g}{x_{2}}\left(\frac{\bar{n}^{\nu}}{q^{-}}-\frac{n^{\nu}}{q^{+}}\right) \frac{\gamma_{T, i j}^{\mu} \delta_{k l}}{N_{c}}\left(\mathcal{O}_{12, \bar{n}}^{j k}(x, b) \mathcal{O}_{11, n}^{j k}(\tilde{x}, b)-\overline{\mathcal{O}}_{12, \bar{n}}^{j k}(x, b) \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right)
\end{align*}
$$

- Operators of $(1,2) \times(1,1)$
$\mathcal{O}_{12}^{i j}\left(x_{1,2,3,3}, b\right)=p_{+}^{2} \int \frac{d z_{1,2,3}}{2 \pi} e^{-i x^{i} z_{i} p_{+} \bar{q}_{j}\left[z_{1} n+b, \pm \infty n+b\right]\left[\pm \infty n, z_{2} n\right] \gamma^{\mu} F_{\mu+}\left[z_{2} n, z_{3} n\right] q_{i}}$
- EM gauge invarint only up to NNLP

$$
q_{\mu} J_{1211}^{\mu \nu} \quad \sim\left(p_{1}^{-}+p_{2}^{+}\right) J_{1211}
$$

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{align*}
\mathcal{J}_{\text {eff }}^{\mu \nu}(q)= & \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\int d x d \tilde{x} \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right)\left|C_{1}\right|^{\prime} \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)\right. \tag{6.17}\\
+ & \int[d x] d \tilde{x} \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right) \\
& \times\left(\delta\left(x_{1}-\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{1}^{*} C_{2}\left(x_{2,3}\right) \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)+\delta\left(x_{3}+\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{2}^{\left.\left.C_{2}^{*}\left(x_{1,2}\right) C_{1}\right\}_{2111}^{\mu \nu}(x, \tilde{x}, b)\right)}\right. \\
+ & \int d x[d \tilde{x}] \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \\
C_{1}= & 1+a_{s} C_{F}\left(-\mathbf{L}_{Q}^{2}+3 \mathbf{L}_{Q}-8+\frac{\pi^{2}}{6}\right)+O\left(a_{s}\right), \\
C_{2}\left(x_{1,2}\right)= & 1+a_{s}\left[C_{F}\left(-\mathbf{L}_{Q}^{2}+\mathbf{L}_{Q}-3+\frac{\pi^{2}}{6}\right)+C_{A} \frac{x_{1}+x_{2}}{x_{1}} \ln \left(\frac{x_{1}+x_{2}}{x_{2}}\right)\right. \\
& \left.+\left(C_{F}-\frac{C_{A}}{2}\right) \frac{x_{1}+x_{2}}{x_{2}} \ln \left(\frac{x_{1}+x_{2}}{x_{1}}\right)\left(2 \mathbf{L}_{Q}-\ln \left(\frac{x_{1}+x_{2}}{x_{1}}\right)-4\right)\right]
\end{align*}
$$

- Coefficient functions up to NLO
- C_{1} is know up to $\mathrm{N}^{3} \mathrm{LO}$
- C_{1} is same for LP, NLP, ... parts of operator $J_{1111}^{\mu \nu}$

Evolution for NLP TMD operators (distributions)

$$
\begin{aligned}
\mu^{2} \frac{d O_{N M}}{d \mu^{2}}(\mu, \zeta) & =\left(\gamma_{N}(\mu, \zeta)+\gamma_{M}(\mu, \zeta)\right) \otimes O_{N M}(\mu, \zeta) \\
\zeta \frac{d O_{N M}}{d \zeta}(\mu, \zeta) & =-\mathcal{D}(b, \mu) \otimes O_{N M}(\mu, \zeta)
\end{aligned}
$$

- $\gamma_{1}=a_{s} C_{F}\left(\frac{3}{2}+\ln \left(\mu^{2} / \zeta\right)\right)+\ldots\left(\right.$ known up to $\left.\mathrm{N}^{3} \mathrm{LO}\right)$
- $\gamma_{2}=a_{s}\left\{2 \mathbb{H}_{1}+\gamma_{1}+\frac{\ln x_{1}}{N_{c}}-N_{c} \ln x_{2}\right\}+a_{s}^{2} \cdots$
- \mathbb{H}_{1} is the Bukhvostov-Frolov-Lipatov-Kuraev kernel for $q F$
- \mathcal{D} is CS-kernel (non-perturbative)
- Same for LP and NLP operators!
- For higher power operators evolution has same structure
- UV AD at NLO can be easily reconstructed from [Braun,Manashov,Rohrwild,09] (+ cusps)
- CS-kernel is identical for all quasi-partonic operators

Conclusion

TMD operator expansion - an efficient approach to TMD factorization beyond LP

- Operator level
- Position space
- Strict \& intuitive rules for operator sorting (TMD-twist)
- All processes

TMD factorization at NLP is derived

- Coefficient function at NLO
- Evolution at NLO
- Rapidity evolution of NLP is the same as for LP
- Some results are simple to generalize beyond NLP

Universitãt Regensburg

